scholarly journals The evolution of city life

2018 ◽  
Vol 285 (1884) ◽  
pp. 20181529 ◽  
Author(s):  
James S. Santangelo ◽  
L. Ruth Rivkin ◽  
Marc T. J. Johnson

Urbanization represents a dominant and growing form of disturbance to Earth's natural ecosystems, affecting biodiversity and ecosystem services on a global scale. While decades of research have illuminated the effects of urban environmental change on the structure and function of ecological communities in cities, only recently have researchers begun exploring the effects of urbanization on the evolution of urban populations. The 15 articles in this special feature represent the leading edge of urban evolutionary biology and address existing gaps in our knowledge. These gaps include: (i) the absence of theoretical models examining how multiple evolutionary mechanisms interact to affect evolution in urban environments; (ii) a lack of data on how urbanization affects natural selection and local adaptation; (iii) poor understanding of whether urban areas consistently affect non-adaptive and adaptive evolution in similar ways across multiple cities; (iv) insufficient data on the genetic and especially genomic signatures of urban evolutionary change; and (v) limited understanding of the evolutionary processes underlying the origin of new human commensals. Using theory, observations from natural populations, common gardens, genomic data and cutting-edge population genomic and landscape genetic tools, the papers in this special feature address these gaps and highlight the power of urban evolutionary biology as a globally replicated ‘experiment’ that provides a powerful approach for understanding how human altered environments affect evolution.

2019 ◽  
Vol 36 (8) ◽  
pp. 1686-1700 ◽  
Author(s):  
Covadonga Vara ◽  
Laia Capilla ◽  
Luca Ferretti ◽  
Alice Ledda ◽  
Rosa A Sánchez-Guillén ◽  
...  

Abstract One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein–DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.


2021 ◽  
Author(s):  
Alexander Joseph Blumenfeld ◽  
Pierre Andre Eyer ◽  
Anjel M Helms ◽  
Grzegorz Buczkowski ◽  
Edward L Vargo

Biological invasions are becoming more prevalent due to the rise of global trade and expansion of urban areas. Ants are among the most prolific invaders, with many exhibiting a multi-queen colony structure, dispersal through budding and a lack of inter-nest aggression. Although these characteristics are generally associated with the invasions of exotic ants, they may also facilitate the spread of native ants into novel habitats (e.g., urban areas). Native to North American forests, the odorous house ant Tapinoma sessile has become abundant in urban environments throughout the United States. Forest-dwelling colonies typically have a small workforce, inhabit a single nest, and are headed by a single queen, whereas urban colonies tend to be several orders of magnitude larger, inhabit multiple nests and are headed by multiple queens. Here, we explore and compare the population genetic and breeding structure of T. sessile within and between urban and natural environments in several localities across its distribution range. We found the social structure of a colony to be a plastic trait in both habitats, although extreme polygyny (i.e., nests with multiple queens) was confined to urban habitats. Additionally, polydomous colonies (i.e., nests lacking genetic differentiation and behavioral antagonism) were only present in urban habitats, suggesting T. sessile can only achieve unicoloniality within urbanized areas. Finally, we identified strong differentiation between urban and natural populations in each locality and continent-wide, indicating cities may restrict gene flow and exert intense selection pressure. Overall, our study highlights urbanization's influence in charting the evolutionary course for species.


Author(s):  
Sarah E. Diamond ◽  
Ryan A. Martin

Although research performed in cities will not uncover new evolutionary mechanisms, it could provide unprecedented opportunities to examine the interplay of evolutionary forces in new ways and new avenues to address classic questions. However, while the variation within and among cities affords many opportunities to advance evolutionary biology research, careful alignment between how cities are used and the research questions being asked is necessary to maximize the insights that can be gained. In this review, we develop a framework to help guide alignment between urban evolution research approaches and questions. Using this framework, we highlight what has been accomplished to date in the field of urban evolution and identify several up-and-coming research directions for further expansion. We conclude that urban environments can be used as evolutionary test beds to tackle both new and long-standing questions in evolutionary biology. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259395
Author(s):  
Samantha H. Yabsley ◽  
Jessica Meade ◽  
John M. Martin ◽  
Justin A. Welbergen

Urban expansion is a major threat to natural ecosystems but also creates novel opportunities that adaptable species can exploit. The grey-headed flying-fox (Pteropus poliocephalus) is a threatened, highly mobile species of bat that is increasingly found in human-dominated landscapes, leading to many management and conservation challenges. Flying-fox urbanisation is thought to be a result of diminishing natural foraging habitat or increasing urban food resources, or both. However, little is known about landscape utilisation of flying-foxes in human-modified areas, and how this may differ in natural areas. Here we examine positional data from 98 satellite-tracked P. poliocephalus for up to 5 years in urban and non-urban environments, in relation to vegetation data and published indices of foraging habitat quality. Our findings indicate that human-modified foraging landscapes sustain a large proportion of the P. poliocephalus population year-round. When individuals roosted in non-urban and minor-urban areas, they relied primarily on wet and dry sclerophyll forest, forested wetlands, and rainforest for foraging, and preferentially visited foraging habitat designated as high-quality. However, our results highlight the importance of human-modified foraging habitats throughout the species’ range, and particularly for individuals that roosted in major-urban environments. The exact plant species that exist in human-modified habitats are largely undocumented; however, where this information was available, foraging by P. poliocephalus was associated with different dominant plant species depending on whether individuals roosted in ‘urban’ or ‘non-urban’ areas. Overall, our results demonstrate clear differences in urban- and non-urban landscape utilisation by foraging P. poliocephalus. However, further research is needed to understand the exact foraging resources used, particularly in human-modified habitats, and hence what attracts flying-foxes to urban areas. Such information could be used to modify the urban foraging landscape, to assist long-term habitat management programs aimed at minimising human-wildlife conflict and maximising resource availability within and outside of urban environments.


2019 ◽  
Author(s):  
James S. Santangelo ◽  
Carole Advenard ◽  
L. Ruth Rivkin ◽  
Ken A. Thompson

AbstractA growing body of evidence suggests that natural populations can evolve to better tolerate the novel environmental conditions associated with urban areas. Invariably, studies of adaptive divergence in urban areas examine only one or a few traits at a time from populations residing only at the most extreme urban and nonurban habitats. Thus, whether urbanization is driving divergence in many traits simultaneously in a manner that varies with the degree of urbanization remains unclear. To address this gap, we generated seed families of white clover (Trifolium repens) collected from 27 populations along an urbanization gradient in Toronto, Canada, and grew them up to measure multiple phenotypic traits in a common garden. Overall, urban populations had later phenology and germination, larger flowers, thinner stolons, reduced cyanogenesis, greater biomass, and were more attractive to pollinators. Pollinator observations revealed near complete turnover between urban and nonurban sites, which may explain some of the observed divergence in floral traits and phenology. Our results suggest that adaptation to urban environments involves multiple organismal traits.


2020 ◽  
Vol 7 (12) ◽  
pp. 201356
Author(s):  
Manuela Merling de Chapa ◽  
Alexandre Courtiol ◽  
Marc Engler ◽  
Lisa Giese ◽  
Christian Rutz ◽  
...  

By 2040, roughly two-thirds of humanity are expected to live in urban areas. As cities expand, humans irreversibly transform natural ecosystems, creating both opportunities and challenges for wildlife. Here, we investigate how the Northern Goshawk ( Accipiter gentilis ) is adjusting to urban environments. We measured a variety of behavioural and ecological parameters in three urban and four rural study sites. City life appeared related to all parameters we measured. Urban female goshawks were overall 21.7 (CI 95% 5.13–130) times more likely to defend their nestlings from humans than rural females. Urban goshawks were 3.64 (CI 95% 2.05–6.66) times more likely to feed on pigeons and had diets exhibiting lower overall species richness and diversity. Urban females laid eggs 12.5 (CI 95% 7.12–17.4) days earlier than rural individuals and were 2.22 (CI 95% 0.984–4.73) times more likely to produce a brood of more than three nestlings. Nonetheless, urban goshawks suffered more from infections with the parasite Trichomonas gallinae , which was the second most common cause of mortality (14.6%), after collisions with windows (33.1%). In conclusion, although city life is associated with significant risks, goshawks appear to thrive in some urban environments, most likely as a result of high local availability of profitable pigeon prey. We conclude that the Northern Goshawk can be classified as an urban exploiter in parts of its distribution.


2020 ◽  
Vol 16 (9) ◽  
pp. 20200511
Author(s):  
James S. Santangelo ◽  
L. Ruth Rivkin ◽  
Carole Advenard ◽  
Ken A. Thompson

Evidence suggests that natural populations can evolve to better tolerate the novel environmental conditions associated with urban areas. Studies of adaptive divergence in urban areas often examine one or a few traits at a time from populations residing only at the most extreme urban and nonurban habitats. Thus, whether urbanization drives divergence in many traits simultaneously in a manner that varies with the degree of urbanization remains unclear. To address this gap, we generated seed families of white clover ( Trifolium repens ) collected from 27 populations along an urbanization gradient in Toronto, Canada, grew them in a common garden, and measured 14 phenotypic traits. Families from urban sites had evolved later phenology and germination, larger flowers, thinner stolons, reduced cyanogenesis, greater biomass and greater seed set. Pollinator observations revealed near-complete turnover of pollinator morphological groups along the urbanization gradient, which may explain some of the observed divergences in floral traits and phenology. Our results suggest that adaptation to urban environments involves multiple traits.


2015 ◽  
Vol 26 (3-4) ◽  
pp. 116-123
Author(s):  
A. P. Korzh ◽  
T. V. Zahovalko

Recently, the number of published works devoted to the processes of synanthropization of fauna, is growing like an avalanche, which indicates the extreme urgency of this theme. In our view, the process of forming devices to coexist with human and the results of his life reflects the general tandency of the modern nature evolution. Urbanization is characteristic for such a specific group of animals like amphibians, the evidence of which are numerous literature data. Many researchers use this group to assess the bioindicative quality of the environment. For this aim a variety of indicators are used: from the cellular level of life of organization up to the species composition of the group in different territories. At the same time, the interpretation of the results is not always comparable for different areas and often have significantly different interpretations by experts. Urban environment, primarily due to the contamination is extremely aggressive to amphibians. As a consequence, the urban populations of amphibians may be a change in the demographic structure, affecting the reproductive ability of the population, the disappearance of the most sensitive species or individuals, resizing animals, the appearance of abnormalities in the development, etc. At the same time play an important amphibians in the ecosystems of cities, and some species in these conditions even feel relatively comfortable. Therefore, it is interesting to understand the mechanisms of self-sustaining populations of amphibians in urban environments. To assess the impact of natural and anthropogenic factors on the development of amphibian populations were used cognitive modeling using the program Vensim PLE. Cognitive map of the model for urban and suburban habitat conditions were the same. The differences concerned the strength of connections between individual factors (migration, fertility, pollution) and their orientation. In general, factors like pollution, parasites, predators had negative impact on the population, reducing its number. The birth rate, food and migration contributed to raising number of individuals. Some of the factors affected on the strength to of each other as well: the majority of the factors affected the structure of the population, had an influence on the fertility. Thanks to it the model reflects the additive effect of complex of factors on the subsequent status of the population. Proposed and analyzed four scenarios differing strength and duration of exposure. In the first scenario, a one-time contamination occurs and not subsequently repeated. The second and third scenario assumes half board contamination, 1 year (2 scenario) and two years (scenario 3). In the fourth scenario, the pollution affected the population of amphibians constantly. In accordance with the results of simulation, much weaker than the natural populations respond to pollution - have them as an intensive population growth and its disappearance at constant pollution is slow. Changes to other parameters of the model showed that this pollution is the decisive factor -only the constant action leads to a lethal outcome for the populations. All other components of the model have a corrective effect on the population dynamics, without changing its underlying trand. In urban areas due to the heavy impact of pollution maintaining the population is only possible thanks to the migration process – the constant replenishment of diminishing micropopulations of natural reserves. This confirms the assumption that the form of existence metapopulations lake frog in the city. In order to maintain the number of amphibians in urban areas at a high level it is necessary to maintain existing migration routes and the creation of new ones. Insular nature of the placement of suitable habitats in urban areas causes the metapopulation structure of the types of urbanists. Therefore, the process of urbanization is much easier for those species whicht are capable of migration in conditions of city. In the initial stages of settling the city micropopulationis formed by selective mortality of the most susceptible individuals to adverse effects. In future, maintaining the categories of individuals is provided mainly due to migration processes metapopulisation form of the species of existence is supported). It should be noted that the changes in the previous levels are always saved in future. In the case of reorganizations of individuals we of morphology can assume the existence of extremely adverse environmental conditions that threaten the extinction of the micropopulations. 


Author(s):  
Philip James

The focus of this chapter is an examination of the diversity of living organisms found within urban environments, both inside and outside buildings. The discussion commences with prions and viruses before moving on to consider micro-organisms, plants, and animals. Prions and viruses cause disease in plants and animals, including humans. Micro-organisms are ubiquitous and are found in great numbers throughout urban environments. New technologies are providing new insights into their diversity. Plants may be found inside buildings as well as in gardens and other green spaces. The final sections of the chapter offer a discussion of the diversity of animals that live in urban areas for part or all of their life cycle. Examples of the diversity of life in urban environments are presented throughout, including native and non-native species, those that are benign and deadly, and the common and the rare.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 175
Author(s):  
Jan Geletič ◽  
Michal Lehnert ◽  
Pavel Krč ◽  
Jaroslav Resler ◽  
Eric Scott Krayenhoff

The modelling of thermal exposure in outdoor urban environments is a highly topical challenge in modern climate research. This paper presents the results derived from a new micrometeorological model that employs an integrated biometeorology module to model Universal Thermal Climate Index (UTCI). This is PALM-4U, which includes an integrated human body-shape parameterization, deployed herein for a pilot domain in Prague, Czech Republic. The results highlight the key role of radiation in the spatiotemporal variability of thermal exposure in moderate-climate urban areas during summer days in terms of the way in which this directly affects thermal comfort through radiant temperature and indirectly through the complexity of turbulence in street canyons. The model simulations suggest that the highest thermal exposure may be expected within street canyons near the irradiated north sides of east–west streets and near streets oriented north–south. Heat exposure in streets increases in proximity to buildings with reflective paints. The lowest heat exposure during the day may be anticipated in tree-shaded courtyards. The cooling effect of trees may range from 4 °C to 9 °C in UTCI, and the cooling effect of grass in comparison with artificial paved surfaces in open public places may be from 2 °C to 5 °C UTCI. In general terms, this study illustrates that the PALM modelling system provides a new perspective on the spatiotemporal differentiation of thermal exposure at the pedestrian level; it may therefore contribute to more climate-sensitive urban planning.


Sign in / Sign up

Export Citation Format

Share Document