scholarly journals Calcified gill filaments increase respiratory function in fishes

2020 ◽  
Vol 287 (1920) ◽  
pp. 20192796
Author(s):  
Andy J. Turko ◽  
Bianca Cisternino ◽  
Patricia A. Wright

The morphology of fish gills is closely linked to aerobic capacity and tolerance of environmental stressors such as hypoxia. The importance of gill surface area is well studied, but little is known about how the mechanical properties of gill tissues determine function. In some fishes, the bases of the gill filaments are surrounded by a calcified ‘sheath' of unknown function. We tested two non-exclusive hypotheses: (i) calcified gill filaments enhance water flow through the gill basket, improving aquatic respiratory function, and (ii) in amphibious fishes, calcification provides support for gills out of water. In a survey of more than 100 species of killifishes and related orders, we found filament calcification was widespread and thus probably arose before the evolution of amphibious lifestyles in killifishes. Calcification also did not differ between amphibious and fully aquatic species, but terrestrial acclimation caused calcium deposition on the filaments of the killifish Kryptolebias marmoratus , suggesting a possible structural role when out of water. We found strong evidence supporting a role for filament calcification in enhancing aquatic respiratory function. First, acclimation to increased respiratory demands (hypoxia, elevated temperatures) induced calcium deposition on the filaments of K. marmoratus . Next, gentle removal of filament calcification decreased branchial resistance to water flow, indicating disruption of gill basket positioning. Thus, the mechanical properties of the gill filaments appear to play an important and previously unappreciated role in determining fish respiratory function.

Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


1970 ◽  
Author(s):  
B. A. Zenkevich ◽  
P. L. Kirillov ◽  
G. V. Alekseev ◽  
O. L. Peskov ◽  
O. A. Sudnitsyn

2006 ◽  
Vol 9 (8) ◽  
pp. 723-730
Author(s):  
Abdelaziz Al-Khlaifat ◽  
Awni Al-Otoom

Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract NICROFER 6023 is a nickel-chromium-iron alloy containing small quantities of aluminum. It has excellent resistance to oxidation at high temperatures, good resistance in oxidizing sulfur-bearing atmospheres and good resistance to carburizing conditions. The alloy has good mechanical properties at room and elevated temperatures. Its applications include heat treating furnace equipment, chemical equipment in various industries, and power plant equipment. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-314. Producer or source: Vereingte Deutsche Metallwerke AG.


Alloy Digest ◽  
1966 ◽  
Vol 15 (5) ◽  

Abstract ESCO Alloy 72 is a cobalt-base alloy having high corrosion, heat and thermal shock resistance. It is recommended for applications requiring good mechanical properties at elevated temperatures and/or in corrosive media. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Co-48. Producer or source: ESCO Corporation.


Alloy Digest ◽  
1952 ◽  
Vol 1 (3) ◽  

Abstract Berylco 25S alloy is the high-performance beryllium-copper spring material of 2 percent nominal beryllium content. It responds to precipitation-hardening for maximum mechanical properties. It has high elastic and endurance strength, good electrical and thermal conductivity, excellent resistance to wear and corrosion, high corrosion-fatigue strength, good resistance to moderately elevated temperatures, and no embrittlement or loss of normal ductility at subzero temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-3. Producer or source: Beryllium Corporation.


Alloy Digest ◽  
1965 ◽  
Vol 14 (9) ◽  

Abstract SANDVIK SANICRO 31 is an iron-nickel-chromium alloy having good resistance to corrosion and oxidation and good mechanical properties at elevated temperatures. It is recommended for electrical sheathing, pyrometer tubes, equipment for heat treating and furnace tubes and other equipment in the petrochemical industry. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-172. Producer or source: Sandvik.


Sign in / Sign up

Export Citation Format

Share Document