scholarly journals Long-lived termite kings and queens activate telomerase in somatic organs

2021 ◽  
Vol 288 (1949) ◽  
Author(s):  
Justina Koubová ◽  
Marie Pangrácová ◽  
Marek Jankásek ◽  
Ondřej Lukšan ◽  
Tomáš Jehlík ◽  
...  

Kings and queens of termites, like queens of other advanced eusocial insects, are endowed with admirable longevity, which dramatically exceeds the life expectancies of their non-reproducing nest-mates and related solitary insects. In the quest to find the mechanisms underlying the longevity of termite reproductives, we focused on somatic maintenance mediated by telomerase. This ribonucleoprotein is well established for pro-longevity functions in vertebrates, thanks primarily to its ability of telomere extension. However, its participation in lifespan regulation of insects, including the eusocial taxa, remains understudied. Here, we report a conspicuous increase of telomerase abundance and catalytic activity in the somatic organs of primary and secondary reproductives of the termite Prorhinotermes simplex and confirm a similar pattern in two other termite species. These observations stand in contrast with the telomerase downregulation characteristic for most adult somatic tissues in vertebrates and also in solitary insects and non-reproducing castes of termites. At the same time, we did not observe caste-specific differences in telomere lengths that might explain the differential longevity of termite castes. We conclude that although the telomerase activation in termite reproductives is in line with the broadly assumed association between telomerase and longevity, its direct phenotypic impact remains to be elucidated.

Author(s):  
Eva Janisiw ◽  
Marilina Raices ◽  
Fabiola Balmir ◽  
Luis Paulin Paz ◽  
Antoine Baudrimont ◽  
...  

SummaryPoly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in promoting the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism.


2021 ◽  
pp. 1-6
Author(s):  
Justina Koubová ◽  
Radmila Čapková Frydrychová

Telomere biology is closely linked to the process of aging. The restoration of telomere length by maintaining telome­rase activity in certain cell types of human adults allows for the proliferative capacity of the cells and preserves the regeneration potential of the tissue. The absence of telome­rase, that leads to telomere attrition and irreversible cell cycle arrest in most somatic cells, acts as a protective mechanism against uncontrolled cancer growth. Nevertheless, there have been numerous studies indicating noncanonical functions of telomerase besides those involved in telomere lengthening. Eusocial insects serve as a great system for aging research. This is because eusocial reproductives, such as queens and kings, have a significantly extended lifespan compared to nonreproductive individuals of the same species. We report that the somatic tissues of honeybee queens (<i>Apis mellifera</i>) are associated with upregulated telomerase activity; however, this upregulation does not fully correlate with the rate of DNA replication in the tissues. This indicates a noncanonical role of telomerase in the somatic tissues of honeybee queens.


2016 ◽  
Vol 3 (11) ◽  
pp. 160682 ◽  
Author(s):  
Feargus Cooney ◽  
Emma I. K. Vitikainen ◽  
Harry H. Marshall ◽  
Wilmie van Rooyen ◽  
Robert L. Smith ◽  
...  

In eusocial insects, the ability to discriminate nest-mates from non-nest-mates is widespread and ensures that altruistic actions are directed towards kin and agonistic actions are directed towards non-relatives. Most tests of nest-mate recognition have focused on hymenopterans, and suggest that cooperation typically evolves in tandem with strong antagonism towards non-nest-mates. Here, we present evidence from a phylogenetically and behaviourally basal termite species that workers discriminate members of foreign colonies. However, contrary to our expectations, foreign intruders were the recipients of more rather than less cooperative behaviour and were not subjected to elevated aggression. We suggest that relationships between groups may be much more peaceable in basal termites compared with eusocial hymenoptera, owing to energetic and temporal constraints on colony growth, and the reduced incentive that totipotent workers (who may inherit breeding status) have to contribute to self-sacrificial intergroup conflict.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
RI-XIN JIANG ◽  
HONG-RUI ZHANG ◽  
K. TARO ELDREDGE ◽  
XIAO-BIN SONG ◽  
YAN-DA LI ◽  
...  

Termites (Isoptera) are among the most ecologically ubiquitous of terrestrial eusocial insects and provide an attractive environment for symbionts, which have evolved numerous times independently, and in lineages as diverse as millipedes and beetles. Previous studies reported the discovery of unequivocal termitophily in mid-Cretaceous amber from northern Myanmar, providing evidence that pushed the origin of termitophily back into the Mesozoic. Here we report the discovery of two more pieces of Cretaceous amber containing individuals of the trichopseniine rove beetle Cretotrichopsenius burmiticus Cai et al., 2017 (Staphylinidae: Aleocharinae: Trichopseniini) preserved together with their potential host termites, providing further evidence regarding the association between these two insect lineages. Two new termite species and genera are described as putative hosts for C. burmiticus: Arceotermes hospitis Engel & Jiang, gen. et sp. nov. and Tanytermitalis philetaerus Engel & Cai, gen. et sp. nov. Each is included in a new family, Arceotermitidae Engel, fam. nov. (type genus: Arceotermes Engel & Jiang, gen. nov.), and Tanytermitidae Engel, fam. nov. (type genus: Tanytermes Engel et al., 2007). In order to better characterize these two families the classification of lower Isoptera and clade Xylophagodea (= Cryptocercidae + Isoptera) is emended with the following new taxa: Idanotermitinae Engel, subfam. nov.; Melqartitermitidae Engel, fam. nov.; Mylacrotermitidae Engel, fam. nov.; Krishnatermitidae Engel, fam. nov.; Cosmotermitinae Engel, subfam. nov.; Hodotermopsinae Engel, subfam. nov.; Artisoptera Engel, minord. nov.; Cryptocercaptera Engel, infraord. nov. Lower termites were remarkably diverse during the mid-Cretaceous but declined in diversity considerably by the Palaeogene. The fossil rove beetle Cretotrichopsenius Cai et al., 2017 currently provides the earliest definitive evidence of termitophily and the complex association between rove beetles and termites.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Eva Janisiw ◽  
Marilina Raices ◽  
Fabiola Balmir ◽  
Luis F. Paulin ◽  
Antoine Baudrimont ◽  
...  

Abstract Poly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in coordinating the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism.


Author(s):  
G. I. Kaye ◽  
J. D. Cole

For a number of years we have used an adaptation of Komnick's KSb(OH)6-OsO4 fixation method for the localization of sodium in tissues in order to study transporting epithelia under a number of different conditions. We have shown that in actively transporting rabbit gallbladder epithelium, large quantities of NaSb(OH)6 precipitate are found in the distended intercellular compartment, while localization of precipitate is confined to the inner side of the lateral plasma membrane in inactive gallbladder epithelium. A similar pattern of distribution of precipitate has been demonstrated in human and rabbit colon in active and inactive states and in the inactive colonic epithelium of hibernating frogs.


Author(s):  
J. C. Wheatley ◽  
J. M. Cowley

Rare-earth phosphates are of particular interest because of their catalytic properties associated with the hydrolysis of many aromatic chlorides in the petroleum industry. Lanthanum phosphates (LaPO4) which have been doped with small amounts of copper have shown increased catalytic activity (1). However the physical and chemical characteristics of the samples leading to good catalytic activity are not known.Many catalysts are amorphous and thus do not easily lend themselves to methods of investigation which would include electron microscopy. However, the LaPO4, crystals are quite suitable samples for high resolution techniques.The samples used were obtained from William L. Kehl of Gulf Research and Development Company. The electron microscopy was carried out on a JEOL JEM-100B which had been modified for high resolution microscopy (2). Standard high resolution techniques were employed. Three different sample types were observed: 669A-1-5-7 (poor catalyst), H-L-2 (good catalyst) and 27-011 (good catalyst).


2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


1995 ◽  
Vol 74 (03) ◽  
pp. 958-961 ◽  
Author(s):  
Raelene L Kinlough-Rathbone ◽  
Dennis W Perry

SummaryPlatelets are exposed to thrombin when they take part in arterial thrombus formation, and they may return to the circulation when they are freed by fibrinolysis and dislodged by flowing blood. Thrombin causes the expression of procoagulant activity on platelets, and if this activity persists, the recirculating platelets may contribute to subsequent thrombosis. We have developed techniques to degranulate human platelets by treatment with thrombin, and recover them as single, discrete platelets that aggregate in response to both weak and strong agonists. In the present study we examined the duration of procoagulant activity on the surface of thrombin-degranulated platelets by two methods: a prothrombinase assay, and the binding of 125I-labeled annexin. Control platelets generated 0.9 ± 0.4 U thrombin per 107 platelets in 15 min. Suspensions of thrombin-degranulated platelets formed 5.4 ± 0.1 U thrombin per 107 platelets in this time. Binding of 125I-annexin V was also greater with thrombin-treated platelets than with control platelets (controls: 1.7 ±0.1 ng annexin/107 platelets; thrombin-degranulated platelets: 6.8 ± 0.2 ng annexin/107 platelets). With thrombin-degranulated platelets, increased procoagulant activity and annexin binding persisted for at least 4 h after degranulation and resuspension, indicating that the catalytic activity for the prothrombinase complex is not reversed during this time. These platelets maintained their ability to aggregate for 4 h, even in response to the weak agonist, ADP. Thus, platelets that have taken part in thrombus formation and returned to the circulation may contribute to the promotion of further thrombotic events because of the persistence of procoagulant activity on their surface.


Sign in / Sign up

Export Citation Format

Share Document