somatic maintenance
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Martin Quque ◽  
Claire Villette ◽  
François Criscuolo ◽  
Cédric Sueur ◽  
Fabrice Bertile ◽  
...  

Author(s):  
Anita V. Kumar ◽  
Louis R. Lapierre

AbstractSomatic maintenance and cell survival rely on proper protein homeostasis to ensure reliable functions across the cell and to prevent proteome collapse. Maintaining protein folding and solubility is central to proteostasis and is coordinated by protein synthesis, chaperoning, and degradation capacities. An emerging aspect that influences proteostasis is the dynamic protein partitioning across different subcellular structures and compartments. Here, we review recent literature related to nucleocytoplasmic partitioning of proteins, nuclear and cytoplasmic quality control mechanisms, and their impact on the development of age-related diseases. We also highlight new points of entry to modulate spatially-regulated proteostatic mechanisms to delay aging.


2021 ◽  
Vol 8 (9) ◽  
pp. 211099
Author(s):  
Clare Andrews ◽  
Erica Zuidersma ◽  
Simon Verhulst ◽  
Daniel Nettle ◽  
Melissa Bateson

Birds exposed to food insecurity—defined as temporally variable access to food—respond adaptively by storing more energy. To do this, they may reduce energy allocation to other functions such as somatic maintenance and repair. To investigate this trade-off, we exposed juvenile European starlings ( Sturnus vulgaris , n = 69) to 19 weeks of either uninterrupted food availability or a regime where food was unpredictably unavailable for a 5-h period on 5 days each week. Our measures of energy storage were mass and fat scores. Our measures of somatic maintenance were the growth rate of a plucked feather, and erythrocyte telomere length (TL), measured by analysis of the terminal restriction fragment. The insecure birds were heavier than the controls, by an amount that varied over time. They also had higher fat scores. We found no evidence that they consumed more food overall, though our food consumption data were incomplete. Plucked feathers regrew more slowly in the insecure birds. TL was reduced in the insecure birds, specifically, in the longer percentiles of the within-individual TL distribution. We conclude that increased energy storage in response to food insecurity is achieved at the expense of investment in somatic maintenance and repair.


2021 ◽  
Vol 118 (22) ◽  
pp. e2102088118
Author(s):  
Stig W. Omholt ◽  
Thomas B. L. Kirkwood

Each animal in the Darwinian theater is exposed to a number of abiotic and biotic risk factors causing mortality. Several of these risk factors are intimately associated with the act of energy acquisition as such and with the amount of reserve the organism has available from this acquisition for overcoming temporary distress. Because a considerable fraction of an individual’s lifetime energy acquisition is spent on somatic maintenance, there is a close link between energy expenditure on somatic maintenance and mortality risk. Here, we show, by simple life-history theory reasoning backed up by empirical cohort survivorship data, how reduction of mortality risk might be achieved by restraining allocation to somatic maintenance, which enhances lifetime fitness but results in aging. Our results predict the ubiquitous presence of senescent individuals in a highly diverse group of natural animal populations, which may display constant, increasing, or decreasing mortality with age. This suggests that allocation to somatic maintenance is primarily tuned to expected life span by stabilizing selection and is not necessarily traded against reproductive effort or other traits. Due to this ubiquitous strategy of modulating the somatic maintenance budget so as to increase fitness under natural conditions, it follows that individuals kept in protected environments with very low environmental mortality risk will have their expected life span primarily defined by somatic damage accumulation mechanisms laid down by natural selection in the wild.


2021 ◽  
Vol 288 (1949) ◽  
Author(s):  
Justina Koubová ◽  
Marie Pangrácová ◽  
Marek Jankásek ◽  
Ondřej Lukšan ◽  
Tomáš Jehlík ◽  
...  

Kings and queens of termites, like queens of other advanced eusocial insects, are endowed with admirable longevity, which dramatically exceeds the life expectancies of their non-reproducing nest-mates and related solitary insects. In the quest to find the mechanisms underlying the longevity of termite reproductives, we focused on somatic maintenance mediated by telomerase. This ribonucleoprotein is well established for pro-longevity functions in vertebrates, thanks primarily to its ability of telomere extension. However, its participation in lifespan regulation of insects, including the eusocial taxa, remains understudied. Here, we report a conspicuous increase of telomerase abundance and catalytic activity in the somatic organs of primary and secondary reproductives of the termite Prorhinotermes simplex and confirm a similar pattern in two other termite species. These observations stand in contrast with the telomerase downregulation characteristic for most adult somatic tissues in vertebrates and also in solitary insects and non-reproducing castes of termites. At the same time, we did not observe caste-specific differences in telomere lengths that might explain the differential longevity of termite castes. We conclude that although the telomerase activation in termite reproductives is in line with the broadly assumed association between telomerase and longevity, its direct phenotypic impact remains to be elucidated.


2021 ◽  
Vol 376 (1823) ◽  
pp. 20190737 ◽  
Author(s):  
Anissa Kennedy ◽  
Jacob Herman ◽  
Olav Rueppell

Social insect reproductives exhibit exceptional longevity instead of the classic trade-off between somatic maintenance and reproduction. Even normally sterile workers experience a significant increase in life expectancy when they assume a reproductive role. The mechanisms that enable the positive relation between the antagonistic demands of reproduction and somatic maintenance are unclear. To isolate the effect of reproductive activation, honeybee workers were induced to activate their ovaries. These reproductively activated workers were compared to controls for survival and gene expression patterns after exposure to Israeli Acute Paralysis Virus or the oxidative stressor paraquat. Reproductive activation increased survival, indicating better immunity and oxidative stress resistance. After qPCR analysis confirmed our experimental treatments at the physiological level, whole transcriptome analysis revealed that paraquat treatment significantly changed the expression of 1277 genes in the control workers but only two genes in reproductively activated workers, indicating that reproductive activation preemptively protects against oxidative stress. Significant overlap between genes that were upregulated by reproductive activation and in response to paraquat included prominent members of signalling pathways and anti-oxidants known to affect ageing. Thus, while our results confirm a central role of vitellogenin, they also point to other mechanisms to explain the molecular basis of the lack of a cost of reproduction and the exceptional longevity of social insect reproductives. Thus, socially induced reproductive activation preemptively protects honeybee workers against stressors, explaining their longevity. This article is part of the theme issue ‘Ageing and sociality: why, when and how does sociality change ageing patterns?'


2021 ◽  
Vol 288 (1944) ◽  
pp. 20201728
Author(s):  
Martin I. Lind ◽  
Hanne Carlsson ◽  
Elizabeth M. L. Duxbury ◽  
Edward Ivimey-Cook ◽  
Alexei A. Maklakov

Ageing evolves because the force of selection on traits declines with age but the proximate causes of ageing are incompletely understood. The ‘disposable soma’ theory of ageing (DST) upholds that competitive resource allocation between reproduction and somatic maintenance underpins the evolution of ageing and lifespan. In contrast, the developmental theory of ageing (DTA) suggests that organismal senescence is caused by suboptimal gene expression in adulthood. While the DST predicts the trade-off between reproduction and lifespan, the DTA predicts that age-specific optimization of gene expression can increase lifespan without reproduction costs. Here we investigated the consequences for lifespan, reproduction, egg size and individual fitness of early-life, adulthood and post-reproductive onset of RNAi knockdown of five ‘longevity’ genes involved in key biological processes in Caenorhabditis elegans . Downregulation of these genes in adulthood and/or during post-reproductive period increases lifespan, while we found limited evidence for a link between impaired reproduction and extended lifespan. Our findings demonstrate that suboptimal gene expression in adulthood often contributes to reduced lifespan directly rather than through competitive resource allocation between reproduction and somatic maintenance. Therefore, age-specific optimization of gene expression in evolutionarily conserved signalling pathways that regulate organismal life histories can increase lifespan without fitness costs.


2021 ◽  
Vol 44 ◽  
Author(s):  
Joshua M. Schrock

Abstract A compelling ecological theory of movement and vigor must explain why humans and other animals spend so much time not moving. When we rest, our somatic maintenance systems continue to work. When our somatic maintenance requirements increase, we place greater subjective value on resting. To explain variation in movement and vigor, we must account for the subjective value of resting.


Sign in / Sign up

Export Citation Format

Share Document