scholarly journals Phase transitions in biology: from bird flocks to population dynamics

2021 ◽  
Vol 288 (1961) ◽  
Author(s):  
Elleard F. W. Heffern ◽  
Holly Huelskamp ◽  
Sonya Bahar ◽  
R. Fredrik Inglis

Phase transitions are an important and extensively studied concept in physics. The insights derived from understanding phase transitions in physics have recently and successfully been applied to a number of different phenomena in biological systems. Here, we provide a brief review of phase transitions and their role in explaining biological processes ranging from collective behaviour in animal flocks to neuronal firing. We also highlight a new and exciting area where phase transition theory is particularly applicable: population collapse and extinction. We discuss how phase transition theory can give insight into a range of extinction events such as population decline due to climate change or microbial responses to stressors such as antibiotic treatment.

2018 ◽  
Vol 15 (10) ◽  
pp. 1850171 ◽  
Author(s):  
M. Chabab ◽  
H. El Moumni ◽  
S. Iraoui ◽  
K. Masmar ◽  
S. Zhizeh

In this work, we study the phase transition of the charged-AdS black hole surrounded by quintessence via an alternative extended phase space defined by the charge square [Formula: see text] and her conjugate [Formula: see text], a quantity proportional to the inverse of horizon radius, while the cosmological constant is kept fixed. The equation of state is derived under the form [Formula: see text] and the critical behavior of such black hole analyzed. In addition, we examine the role of the quintessence parameter and its effects on phase transitions. Besides that, we explore the connection between the microscopic structure and Ruppeiner geothermodynamics. We also find that, at certain points of the phase space, the Ruppeiner curvature is characterised by the presence of singularities that are interpreted as a signal of the occurrence of the phase transitions.


2020 ◽  
Vol 27 ◽  
Author(s):  
Fırat Kurt

: Oligopeptide transporter 3 (OPT3) proteins are one of the subsets of OPT clade, yet little is known about these transporters. Therefore, homolog OPT3 proteins in several plant species were investigated and characterized using bioinformatical tools. Motif and co-expression analyses showed that OPT3 proteins may be involved in both biotic and abiotic stress responses as well as growth and developmental processes. AtOPT3 usually seemed to take part in Fe homeostasis whereas ZmOPT3 putatively interacted with proteins involved in various biological processes from plant defense system to stress responses. Glutathione (GSH), as a putative alternative chelating agent, was used in the AtOPT3 and ZmOPT3 docking analyses to identify their putative binding residues. The information given in this study will contribute to the understanding of OPT3 proteins’ interactions in various pathways and to the selection of potential ligands for OPT3s.


Author(s):  
L. T. Pawlicki ◽  
R. M. Siegoczyński ◽  
S. Ptasznik ◽  
K. Marszałek

AbstractThe main purpose of the experiment was a thermodynamic research with use of the electric methods chosen. The substance examined was olive oil. The paper presents the resistance, capacitive reactance, relative permittivity and resistivity of olive. Compression was applied with two mean velocities up to 450 MPa. The results were shown as functions of pressure and time and depicted on the impedance phase diagram. The three first order phase transitions have been detected. All the changes in material parameters were observed during phase transitions. The material parameters measured turned out to be the much more sensitive long-time phase transition factors than temperature. The values of material parameters and their dependence on pressure and time were compared with the molecular structure, arrangement of molecules and interactions between them. Knowledge about olive oil parameters change with pressure and its phase transitions is very important for olive oil production and conservation.


2017 ◽  
Vol 19 (39) ◽  
pp. 26645-26650 ◽  
Author(s):  
Qingxin Zeng ◽  
Chuang Yao ◽  
Kai Wang ◽  
Chang Q. Sun ◽  
Bo Zou

H–O bond energy governs the PCx for Na/H2O liquid–VI–VII phase transition. Solute concentration affects the path of phase transitions differently with the solute type. Solute–solute interaction lessens the PC2 sensitivity to compression. The PC1 goes along the liquid–VI boundary till the triple phase joint.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Đorđe Dangić ◽  
Olle Hellman ◽  
Stephen Fahy ◽  
Ivana Savić

AbstractThe proximity to structural phase transitions in IV-VI thermoelectric materials is one of the main reasons for their large phonon anharmonicity and intrinsically low lattice thermal conductivity κ. However, the κ of GeTe increases at the ferroelectric phase transition near 700 K. Using first-principles calculations with the temperature dependent effective potential method, we show that this rise in κ is the consequence of negative thermal expansion in the rhombohedral phase and increase in the phonon lifetimes in the high-symmetry phase. Strong anharmonicity near the phase transition induces non-Lorentzian shapes of the phonon power spectra. To account for these effects, we implement a method of calculating κ based on the Green-Kubo approach and find that the Boltzmann transport equation underestimates κ near the phase transition. Our findings elucidate the influence of structural phase transitions on κ and provide guidance for design of better thermoelectric materials.


RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17622-17629
Author(s):  
Ae Ran Lim

We studied the thermal behavior and structural dynamics of [NH3(CH2)3NH3]CdBr4 near phase transition temperatures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adeel Y. Abid ◽  
Yuanwei Sun ◽  
Xu Hou ◽  
Congbing Tan ◽  
Xiangli Zhong ◽  
...  

AbstractNontrivial topological structures offer a rich playground in condensed matters and promise alternative device configurations for post-Moore electronics. While recently a number of polar topologies have been discovered in confined ferroelectric PbTiO3 within artificially engineered PbTiO3/SrTiO3 superlattices, little attention was paid to possible topological polar structures in SrTiO3. Here we successfully create previously unrealized polar antivortices within the SrTiO3 of PbTiO3/SrTiO3 superlattices, accomplished by carefully engineering their thicknesses guided by phase-field simulation. Field- and thermal-induced Kosterlitz–Thouless-like topological phase transitions have also been demonstrated, and it was discovered that the driving force for antivortex formation is electrostatic instead of elastic. This work completes an important missing link in polar topologies, expands the reaches of topological structures, and offers insight into searching and manipulating polar textures.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750046
Author(s):  
Yan Peng ◽  
Tao Chen ◽  
Guohua Liu ◽  
Pengwei Ma

We generalize the holographic superconductor model with dark matter sector by including the Stückelberg mechanism in the four-dimensional anti-de Sitter (AdS) black hole background away from the probe limit. We study effects of the dark matter sector on the [Formula: see text]-wave scalar condensation and find that the dark matter sector affects the critical phase transition temperature and also the order of phase transitions. At last, we conclude that the dark matter sector brings richer physics in this general metal/superconductor system.


Sign in / Sign up

Export Citation Format

Share Document