A thermodynamical investigation of the system benzene-diphenyl

The partial molar heat content, entropy and free energy of benzene in solutions of diphenyl in benzene have been determined by measurement of the partial pressures of benzene over the solu-­ tions. The whole composition range has been covered (as far as the solubility of diphenyl will allow), at temperatures from 30 to 80° C. A check on the accuracy of the experimental method has been made by measuring the vapour pressure of pure benzene over this temperature range, and good agreement has been found with recent values reported in the literature. The calculation of the thermodynamic functions from the vapour pressures requires a knowledge of the compressibility of benzene vapour. An experimental method has been devised for determining the gas imperfections of vapours, and using this the second and third virial coefficients of benzene vapour at various temperatures have been obtained. The variation of the thermodynamic functions of benzene with the composition of the solutions has been compared with that to be expected on the basis of recent statistical theories. It is found that whereas the non-ideal partial molar free energy can be accounted for almost exactly by the theo­ retical expression, the separate heat contents and entropies show some deviations. It is suggested that these deviations arise from slight changes in molecular packing as the composition is varied. The activities of benzene and diphenyl in saturated solutions at 30 to 60° C have been obtained from the vapour pressures of saturated solutions at these temperatures. These lead to values for the latent heat of fusion of diphenyl in agreement with the calorimetric value. The yapour pressure of saturated solutions is discussed.

2017 ◽  
Vol 18 (1) ◽  
pp. 58-63
Author(s):  
N.Yu. Filonenko

In the paper the physical properties and thermodynamic functions of borides Х2В (Х=W, Mo, Mn, Fe, Co, Ni та Cr) are studied with accounting for fluctuation processes. We use the microstructure analysis, the X-ray structural and the durometric analyses to determine the physical properties of alloys. In the paper it is determined the phase composition and physical properties of borides. In this paper for the first time it is determined the thermodynamic functions of borides using the Hillert and Staffansson model with accounting for the first degree approximation of high-temperature expansion for the free energy potential of binary alloys. We obtain the temperature dependences for such thermodynamic functions as Gibbs free energy, entropy, enthalpy and heat capacity Ср along with their values at the formation temperature for Х2В (Х=W, Mo, Mn, Fe, Co, Ni та Cr). The approach under consideration enables to give more thorough from the thermodynamic point of view description of borides formed from the liquid. The outcomes of the thermodynamic function calculation for borides are in good agreement with experimental data and results of other authors.


1988 ◽  
Vol 66 (4) ◽  
pp. 791-793 ◽  
Author(s):  
David Smith

The rotational potential functions for the borohydride ion embedded in potassium and rubidium halides are derived from atom–atom potentials of the Buckingham (exp-6) type. The librational frequencies computed from the potential functions are in good agreement with the observed frequencies. The potential functions for rubidium and potassium borohydrides derived from the atom–atom potentials yield librational frequencies that are about 10% higher than the observed values. Since the entropy of transition for potassium and rubidium borohydrides is less than expected, there is a possibility that there is some ordering of the borohydride ions above the transition temperature. An experimental method is presented for studying the ordering of the borohydride ions based on the difference in the ground level degeneracy of a tetrahedral ion in ordered and disordered states.


2019 ◽  
Vol 107 (2) ◽  
pp. 95-104
Author(s):  
Ru-Shan Lin ◽  
You-Qun Wang ◽  
Zhao-Kai Meng ◽  
Hui Chen ◽  
Yan-Hong Jia ◽  
...  

Abstract In this study, UCl4 was prepared by the reaction of HCl gas with UO2 in the LiCl-KCl eutectic. Then, the electrochemical behavior of U4+ and U3+ on a Mo cathode was investigated by various electrochemical techniques. The reduction process of U4+ was regarded as two steps: U4++e=U3+; U3++3e=U. Diffusion coefficients of U4+ and U3+, the apparent standard potential of U4+/U3+, U3+/U as well as U4+/U in the LiCl-KCl molten salt on the Mo electrode was determined by numerous electrochemical methods. The thermodynamic functions of formation of Gibbs free energy of UCl4 and UCl3 are calculated as well.


1990 ◽  
Vol 209 ◽  
Author(s):  
H. Y. Wang ◽  
R. Najafabadi ◽  
D. J. Srolovitz ◽  
R. Lesar

ABSTRACTA new, accurate method for determining equilibrium segregation to defects in solids is employed to examine the segregation of Cu to grain boundaries in Cu-Ni alloys. The results are in very good agreement with the ones given by Monte Carlo. This method is based upon a point approximation for the configurational entropy, an Einstein model for vibrational contributions to the free energy. To achieve the equilibrium state of a defect in an alloy the free energy is minimized with respect to atomic coordinates and composition of each site at constant chemical potential. One of the main advantages this new method enjoys over other methods such as Monte Carlo, is the efficiency with which the atomic structure of a defect, segregation and thermodynamic properties can be determined. The grain boundary free energy can either increase or decrease with increasing temperature due to the competition between energetic and configurational entropy terms. In general, the grain boundary free energy increases with temperature when the segregation is strongest.


2000 ◽  
Vol 64 (2) ◽  
pp. 311-317 ◽  
Author(s):  
M. C. Warren ◽  
M. T. Dove ◽  
S. A. T. Redfern

AbstractAt high temperature, MgAl2O4 spinel is stabilized by disorder of Mg and Al between octahedral and tetrahedral sites. This behaviour has been measured up to 1700 K in recent neutron experiments, but the extrapolation of subsequently fitted thermodynamic models is not reliable. First principles simulation of the electronic structure of such minerals can in principle accurately predict disorder, but would require unfeasibly large computing resources. We have instead parameterized on-site and short-ranged cluster potentials using a small number of electronic structure simulations at zero temperature. These potentials were then used in large-scale statistical simulations at finite temperatures to predict disordering thermodynamics beyond the range of experimental measurements. Within the temperature range of the experiment, good agreement is obtained for the degree of order. The entropy and free energy are calculated and compared to those from macroscopic models.


2012 ◽  
Vol 9 (4) ◽  
pp. 616-622
Author(s):  
Baghdad Science Journal

In This research a Spectroscopic complement and Thermodynamic properties for molecule PO2 were studied . That included a calculation of potential energy . From the curve of total energy for molecule at equilibrium distance , for bond (P-O), the degenerated of bond energy was (4.332eV) instate of the vibration modes of ( PO2 ) molecule and frequency that was found active in IR spectra because variable inpolarization and dipole moment for molecule. Also we calculate some thermodynamic parameters of ( PO2 ) such as heat of formation , enthalpy , heat Of capacity , entropy and gibb's free energy Were ( -54.16 kcal/mol , 2366.45 kcal/mol , 10.06 kcal /k/mol , 59.52 kcal /k /mol, -15370.51 kcal / mol ) respectively under condition of room temperature and atmosphere pressure ( 298 k , 1 atm.). We calculate there parameters at various temperature from ( 100 – 3000 ) K . It was found that the obtainded results were in a good agreement with previous experimental facts.


1966 ◽  
Vol 49 (6) ◽  
pp. 1209-1220 ◽  
Author(s):  
H.J. KUHN ◽  
E. MARTI

The active transport of oxygen and carbon dioxide into the swim-bladder of fish is discussed. The rete mirabile is a capillary network which is involved in the gas secretion into the bladder. The rete is regarded as a counter-current multiplier. Lactic acid which is produced in the gas gland generates in the rete single concentrating effects for oxygen and carbon dioxide; i.e., for equal partial pressures the concentrations of the gases in the afferent rete capillaries are higher than those in the efferent ones. The single concentrating effects were calculated from measurements of sea robin blood (Root, 1931). The multiplication of these effects within the rete for different rete lengths and different transport rates was numerically evaluated. The calculated O2 and CO2 pressures in the bladder are in good agreement with the experimental results of Scholander and van Dam (1953). The descent velocities at equilibrium between bladder pressure and hydrostatic pressure are discussed for fishes with different rete lengths.


1932 ◽  
Vol 54 (6) ◽  
pp. 2247-2256 ◽  
Author(s):  
John McMorris ◽  
Don M. Yost

Sign in / Sign up

Export Citation Format

Share Document