The origin of the Triassic clay assemblages of Europe with special reference to the Keuper Marl and Rhaetic of parts of England

Hypotheses are reviewed on the origin of the magnesium-rich Triassic clays which characterize the Germanic facies of western Europe and north Africa. Relations between clay minerals, megafacies and stratigraphy are described from 28 localities in the Triassic Keuper Marl, Tea Green Marl and Rhaetic sediments of England. Two clay mineral assemblages are recognized: (1) a detrital assemblage of mica with minor chlorite which occurs throughout all the sediments investigated, and (2) a neoformed assemblage of magnesium-rich clay minerals with a limited occurrence related to certain megafacies cycles which resulted from the transgression and regression of the Alpine facies into the Germanic facies; this assemblage includes sepiolite, palygorskite, chlorite, smectite, corrensite and irregular mixed-layer smectite/mica and smectite/chlorite minerals. The clay mineral neoformations resulted from reactions between the water masses in which the Germanic and Alpine facies were deposited. Controlling the distribution and types of minerals neoformed were the general and local variations in the chemistries of the Alpine and Germanic water masses, as well as competition for available magnesium from other mineral-forming reactions.

1987 ◽  
Vol 124 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Julian E. Andrews

AbstractClay minerals from Middle Jurassic lagoonal mudrocks, siltstones and silty fine-grained sandstones of the upper Great Estuarine Group (Bathonian) are divided into four assemblages. Assemblage 1, the most common assemblage, is rich in mixed-layer illite–smectite with attendant illite and kaolinite. Assemblage 2 is dominated by smectitic clay. These assemblages are indicative of primary Jurassic deposition. Illite and kaolinite were probably derived from the weathering of older rocks and soils in the basin hinterland and were deposited in the lagoons as river-borne detritus. The majority of smectite and mixed-layer illite–smectite is interpreted as the argillization product of Jurassic volcanic dust, also deposited in the lagoons by rivers. Near major Tertiary igneous intrusions these depositional clay mineral assemblages have been altered. Assemblage 3 contains smectite-poor mixed-layer illite–smectite, whilst Assemblage 4 contains no smectitic clay at all. Destruction of smectite interlayers occurred at relatively shallow burial depths (< 2500 m) due to enhanced geothermal gradients and local convective hot-water circulation cells associated with the major Tertiary igneous intrusions.


Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 309-354 ◽  
Author(s):  
C. V. Jeans

AbstractThe regional distribution, mineralogy, petrology and chemistry of the detrital and authigenic clay minerals associated with the Permo-Triassic strata (excluding the Rotliegend: see Ziegler, 2006; this volume), of the onshore and offshore regions of the British Isles are reviewed within their stratigraphical framework. The origin of these clay minerals is discussed in relation to current hypotheses on the developments of the Mg-rich clay mineral assemblages associated with the evaporitic red-bed Germanic facies of Europe and North Africa.Composite clay mineral successions are described for seven regions of the British Isles — the Western Approaches Trough; SW England; South Midlands; Central Midlands; the Cheshire Basin; NE Yorkshire; and the Central North Sea. The detrital clay mineral assemblages of the Early Permian strata are variable, consisting of mica, smectite, smectite-mica, kaolin and chlorite, whereas those of the Late Permian and the Trias are dominated by mica, usually in association with minor Fe-rich chlorite. The detrital mica consists of a mixture of penecontemporaneous ferric mica, probably of pedogenic origin, and recycled Pre-Permian mica. In the youngest Triassic strata (Rhaetian), the detrital clay assemblages may contain appreciable amounts of poorly defined collapsible minerals (irregular mixed-layer smectite-mica-vermiculite) and kaolin, giving them a Jurassic aspect. There are two types of authigenic clay mineral assemblages. Kaolin may occur as a late-stage diagenetic mineral where the original Permo-Triassic porewaters of the sediment have been replaced by meteoritic waters. A suite of early-stage diagenetic clay minerals, many of them Mg-rich, are linked to the evaporitic red-bed facies — these include sepiolite, palygorskite, smectite, irregular mixed- layer smectite-mica and smectite-chlorite, corrensite, chlorite and glauconite (sensu lato). The sandstones and mudstones of the onshore regions of the British Isles display little or no difference in their detrital and authigenic clay mineral assemblages. In contrast, the sandstones of the offshore regions (North Sea) show major differences with the presence of extensive chloritic cements containing Mg-rich and Al-rich chlorite, irregular mixed-layer serpentine-chlorite, and mica.


Clay Minerals ◽  
2002 ◽  
Vol 37 (4) ◽  
pp. 699-707 ◽  
Author(s):  
A. Mirabella ◽  
M. Egli ◽  
S. Carnicelli ◽  
G. Sartori

AbstractThe formation of clay minerals was investigated in Spodosols developed in the subalpine belt, with similar exposure, climate and age, but deriving from different parent materials. All the soils were classified as Haplic Podzols and showed the characteristic eluviation and illuviation features of Fe, Al and organic carbon. However, varying parent material lithology led to different clay mineral assemblages in the soil. Smectite could be found in the E horizons of soils developed from granodiorite and tonalite materials. Its formation was strongly dependent on the presence of chlorite in the parent material. If nearly no other 2:1 mineral components, such as chlorite, are present in the lower soil horizons, then a residual micaceous mineral becomes the dominant clay mineral. The latter derives from a mica-vermiculite interstratified mineral.


Clay Minerals ◽  
2001 ◽  
Vol 36 (3) ◽  
pp. 325-333 ◽  
Author(s):  
J. F. Barrenechea ◽  
M. Rodas ◽  
M. Frey ◽  
J. Alonso-Azcárate ◽  
J. R. Mas

AbstractThe clay mineral assemblages of the Tithonian and Berriasian sediments (Tera and Oncala Groups) in the eastern part of the Cameros basin are investigated at seven localities. The lowest-grade assemblage, located on the southern border of the basin, contains calcite + quartz + hematite + kaolinite + mixed-layer illite-smectite (R = 1, 65 85% illite layers) + discrete illite (IC = 0.5 0.65Δ°2θ). Systematic increases in the illite and chlorite crystallinities suggest increasing metamorphic grade from the northwest part of the basin to the southeast. This trend does not follow the pattern previously described for the overlying late Berriasian–early Aptian sediments (Urbión and Enciso Groups), which exhibit a higher metamorphic grade. This may result from local variations in sedimentary facies, as well as the circulation of hot migratory fluids. Tertiary compression occurring long after the main metamorphic event is considered to be responsible for the enhanced illite and chlorite crystallinities measured in the SE extreme of the basin.


Clay Minerals ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 389-404 ◽  
Author(s):  
M. Setti ◽  
L. Marinoni ◽  
A. Lopez-Galindo

AbstractThe CRP-3 drilling project collected sediments from 3 to 939 mbsf (metres below sea floor) in the Victoria Land Basin in Antarctica. The upper sequence (down to ~790 m bsf) is of Cenozoic age and made up of detrital glaciogenic sediments; the characteristics of clay minerals in this part have been reported elsewhere. Here, the compositional features of clay minerals in the lower sequence such as conglomerates, Devonian sandstones and dolerites are described and genetic processes clarified. Clay minerals in the deepest part of the sequence derive from the alteration of different lithologies that mostly make up the sedimentary basin.Two clay mineral assemblages were characterized through analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). From 790 to 823 mbsf, samples consist of authigenic smectite of variable chemical composition forming imbricated texture of plates or flakes. The smectites probably result from hydrothermal/diagenetic transformation of earlier minerals. The primary smectite cement underwent reorganization during shearing and cataclasis. The lowest part of the sequence (below 823 mbsf) is characterized by an assemblage of kaolinite, mixed-layer illite-smectite, Fe oxyhydroxide, sporadic smectite and poorly crystallized illite. It reflects a stronger alteration process than that recorded in the upper units of core CRP-3, related to hydrothermalism connected with the intrusion of an igneous body. Both assemblages show clear differences in particle morphology, texture and smectite composition to the clay assemblages found in the Cenozoic glaciomarine sediments in the upper sequence. The different phases of alteration appear related to the processes of rifting, exhumation and faulting that characterized this region since the Mesozoic.


Clay Minerals ◽  
2008 ◽  
Vol 43 (4) ◽  
pp. 615-630 ◽  
Author(s):  
L. Daoudi ◽  
F. Rocha ◽  
B. Ouajhain ◽  
J. L. Dinis ◽  
D. Chafiki ◽  
...  

AbstractUpper Cenomanian–Turonian clay mineral assemblages of sediments cropping out in the Western High Atlas basin are studied in four sections. Smectite and mixed-layer illite-smectite (I-S) have been identified as major constituents of the deposits. The composition of clay associations in black shales and associated sediments varies considerably according to age, but usually depends either on the general lithology, the abundance of organic matter, or the depth of burial. A distinct correlation is evident between clay mineral distribution and sea-level. Smectite and mixed-layer I-S with greater percentages of smectite layers increase in sediments deposited during transgressive periods, whereas they decrease progressively in the shallower facies deposited during regression in favour of illite and mixed-layer I-S with a greater percentage of illite. The vertical evolution and lateral distribution of clay assemblages and their relationships with sea-level as well as the palaeogeographic conditions prevailing during the Late Cenomanian–Turonian period (flattened topography and arid climate), indicate a detrital origin of the smectite minerals and a distribution pattern controlled by differential settling processes.


Clay Minerals ◽  
1980 ◽  
Vol 15 (3) ◽  
pp. 263-274 ◽  
Author(s):  
V. A. Frank-Kamenetskii ◽  
N. V. Kotov ◽  
A. A. Rjumin

AbstractExperimental transformations of feldspars and muscovites following additions of magnesite and dolomite have been studied at PH2O = 1 kbar, T = 200–600°C. Formation of layer silicates such as smectite, 7 Å (Mg,Al)-serpentine, some mixed-layer phases and other minerals is shown to be a function of the composition of the starting materials, temperature and run duration. It is established that 1 M- and 2 M1-phlogopites are formed from 1 M- and 2 M1-muscovites, respectively, under Mg-bearing hydrothermal conditions. Some causes of variations in the composition of 7 Å (Mg,Al)-serpentines at elevated temperature as a function of the composition of hydrothermal media are given. These data may be used to explain the main characteristics of clay mineral formation from feldspar- and muscovite-bearing sedimentary rocks during their alteration in postdiagenetic and metasomatic processes.


Clay Minerals ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 161-179 ◽  
Author(s):  
R. Fonseca ◽  
F. J. A. S. Barriga ◽  
K. Tazaki

AbstractGiven that reservoirs contain most of the leached materials from soils, we have studied the sediments accumulated in the bottom of two groups of reservoirs developed under different climatic conditions and thus with contrasting rates of weathering/erosion regimes. Through detailed comparative study of clay minerals of the parent rocks and soils with the clay fractions of the dam sediments, we have concluded that, during cycles of erosion-transport-deposition, the leached materials have complex transformation mechanisms, making them much more active in the environment. All clay-mineral groups are well represented in the reservoir sediments, including abundant mixed-layer and partly disordered minerals. Moreover, the sediments are nutrient-rich and potentially useful as agricultural fertilizers and hence in reversing the declining soil productivity in some regions.


Clay Minerals ◽  
1989 ◽  
Vol 24 (1) ◽  
pp. 91-105 ◽  
Author(s):  
L. E. Jones ◽  
B. W. Sellwood

AbstractFive areally distinct mineral assemblages are recognized in the Inferior Oolite of S. England. In each area, vertical (stratigraphic) variations are insignificant. The five assemblages comprise varying proportions of illite, illite-smectite, kaolinite, chlorite and kaolinite-smectite, the mixed-layer clays being largely poorly crystalline and randomly interstratified. A predominantly detrital rather than authigenic origin is suggested for most of the clays. Shallow-water platform carbonates contain kaolinite with illite and illite-smectite. Kaolinite decreases in abundance away from former mid-Jurassic land areas, the deeper shelf and more basinal facies being dominated by illite and/or illite-smectite. Possible volcanic contributions to clay suites are suggested but cannot yet be fully evaluated. The palaeogeographic usefulness of clay mineral suites is confirmed, even in carbonate-dominated systems.


Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for die origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favouring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again.


Sign in / Sign up

Export Citation Format

Share Document