Influence of parent material on clay minerals formation in Podzols of Trentino, Italy

Clay Minerals ◽  
2002 ◽  
Vol 37 (4) ◽  
pp. 699-707 ◽  
Author(s):  
A. Mirabella ◽  
M. Egli ◽  
S. Carnicelli ◽  
G. Sartori

AbstractThe formation of clay minerals was investigated in Spodosols developed in the subalpine belt, with similar exposure, climate and age, but deriving from different parent materials. All the soils were classified as Haplic Podzols and showed the characteristic eluviation and illuviation features of Fe, Al and organic carbon. However, varying parent material lithology led to different clay mineral assemblages in the soil. Smectite could be found in the E horizons of soils developed from granodiorite and tonalite materials. Its formation was strongly dependent on the presence of chlorite in the parent material. If nearly no other 2:1 mineral components, such as chlorite, are present in the lower soil horizons, then a residual micaceous mineral becomes the dominant clay mineral. The latter derives from a mica-vermiculite interstratified mineral.

1987 ◽  
Vol 124 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Julian E. Andrews

AbstractClay minerals from Middle Jurassic lagoonal mudrocks, siltstones and silty fine-grained sandstones of the upper Great Estuarine Group (Bathonian) are divided into four assemblages. Assemblage 1, the most common assemblage, is rich in mixed-layer illite–smectite with attendant illite and kaolinite. Assemblage 2 is dominated by smectitic clay. These assemblages are indicative of primary Jurassic deposition. Illite and kaolinite were probably derived from the weathering of older rocks and soils in the basin hinterland and were deposited in the lagoons as river-borne detritus. The majority of smectite and mixed-layer illite–smectite is interpreted as the argillization product of Jurassic volcanic dust, also deposited in the lagoons by rivers. Near major Tertiary igneous intrusions these depositional clay mineral assemblages have been altered. Assemblage 3 contains smectite-poor mixed-layer illite–smectite, whilst Assemblage 4 contains no smectitic clay at all. Destruction of smectite interlayers occurred at relatively shallow burial depths (< 2500 m) due to enhanced geothermal gradients and local convective hot-water circulation cells associated with the major Tertiary igneous intrusions.


Clay Minerals ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 389-404 ◽  
Author(s):  
M. Setti ◽  
L. Marinoni ◽  
A. Lopez-Galindo

AbstractThe CRP-3 drilling project collected sediments from 3 to 939 mbsf (metres below sea floor) in the Victoria Land Basin in Antarctica. The upper sequence (down to ~790 m bsf) is of Cenozoic age and made up of detrital glaciogenic sediments; the characteristics of clay minerals in this part have been reported elsewhere. Here, the compositional features of clay minerals in the lower sequence such as conglomerates, Devonian sandstones and dolerites are described and genetic processes clarified. Clay minerals in the deepest part of the sequence derive from the alteration of different lithologies that mostly make up the sedimentary basin.Two clay mineral assemblages were characterized through analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). From 790 to 823 mbsf, samples consist of authigenic smectite of variable chemical composition forming imbricated texture of plates or flakes. The smectites probably result from hydrothermal/diagenetic transformation of earlier minerals. The primary smectite cement underwent reorganization during shearing and cataclasis. The lowest part of the sequence (below 823 mbsf) is characterized by an assemblage of kaolinite, mixed-layer illite-smectite, Fe oxyhydroxide, sporadic smectite and poorly crystallized illite. It reflects a stronger alteration process than that recorded in the upper units of core CRP-3, related to hydrothermalism connected with the intrusion of an igneous body. Both assemblages show clear differences in particle morphology, texture and smectite composition to the clay assemblages found in the Cenozoic glaciomarine sediments in the upper sequence. The different phases of alteration appear related to the processes of rifting, exhumation and faulting that characterized this region since the Mesozoic.


1989 ◽  
Vol 26 (7) ◽  
pp. 1463-1473
Author(s):  
Christian de Kimpe

The chemical and mineralogical analyses of the disaggregated material collected in the fracture planes of crystalline carbonate outcrops at three sites north of Trois-Rivières, Quebec, showed the formation of expanding phyllosilicates, smectite and vermiculite, mainly at the expense of the ferromagnesian minerals hornblende and augite. The clay minerals are enriched in Fe and Mg with respect to the parent material composition and are associated with the crystalline Fe oxides goethite and lepidocrocite. The moderate to low degree of mineral transformation is accounted for by the slow dissolution of the carbonates. Corrensite, a regularly interstratified clay mineral, was identified in 50% of the samples; it probably resulted from the hydrothermal alteration of phlogopite. Silicate alteration may have been responsible for a fraction of the swelling minerals found in the soils of the area.


Clay Minerals ◽  
1984 ◽  
Vol 19 (5) ◽  
pp. 709-735 ◽  
Author(s):  
M. J. Wilson ◽  
D. C. Bain ◽  
D. M. L. Duthie

AbstractThe soils of Scotland are relatively young, being developed mainly on glacial drift deposited some 10 000 years ago. Only a small number of genetic soil types are represented, but this is more than compensated for by the wide variety of parent materials from which the drift ultimately derives. The major parent materials include granite and granitic gneiss, gabbro, basalt/andesite, mica-schist and related metamorphic rock types, Lower Palaeozoic greywackes and shales, Old Red Sandstone sediments, Carboniferous sediments, fluvioglacial sands and gravels, and estuarine silts and clays. The clay mineralogy of the soil associations developed on these parent materials is described and the origin of the clay minerals is interpreted. It is concluded that the influence of inheritance is predominant, but that the effects of pre-glacial weathering and Holocene pedogenesis can also be discerned. Inheritance has contributed a wide variety of clay minerals to the soils, including illite, kaolinite, chlorite, smectite and a number of interstratified minerals, pre-glacial weathering has resulted in the widespread formation of kaolinite and halloysite, irrespective of soil parent material or drainage class, and recent pedogenesis has brought about the transformation of inherited layer silicates by vermiculitization processes, with concomitant interlayer alumination, particularly in surface horizons.


Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 473-512 ◽  
Author(s):  
R. J. Merriman

AbstractLower Palaeozoic rocks crop out extensively in Wales, the Lake District of northern England and the Southern Uplands of Scotland; they also form the subcrop concealed beneath the English Midlands and East Anglia. These mainly marine sedimentary rocks were deposited in basins created during plate tectonic assembly of the various terranes that amalgamated to form the British Isles, 400-600 Ma ago. Final amalgamation occurred during the late Lower Devonian Acadian Orogeny when the basins were uplifted and deformed, producing belts of cleaved, low-grade metasediments, so-called slate belts, with a predominantly Caledonian (NE-SW) trend. The clay mineralogy of mudrock lithologies - including mudstone, shale and slate - found in these belts is reviewed. Using X-ray diffraction data from the <2 μm fractions of ~4500 mudrocks samples, clay mineral assemblages are summarized and discussed in terms of diagenetic and low-grade metamorphic reactions, and the metapelitic grade indicated by the Kübler index of illite crystallinity.Two sequences of clay mineral assemblages, or regional assemblages, are recognized. Regional Assemblage A is characterized by a greater diversity of clay minerals in assemblages from all metapelitic grades. It includes K-rich, intermediate Na/K and Na-rich white micas, chlorite and minor amounts of pyrophyllite. Corrensite, rectorite and pyrophyllite are found in the clay assemblages of contact or hydrothermally altered mudstones. K-white micas are aluminous and phengite-poor, with b cell dimensions in the range 8.98-9.02 Å. Regional Assemblage B has fewer clay minerals in assemblages from a range of metapelitic grades. Phengite-rich K-mica is characteristic whereas Na- micas are rare, and absent in most assemblages; chlorite is present and minor corrensite occurs in mudrocks with mafic-rich detritus. Minor amounts of kaolinite are sporadically present, but dickite and nacrite are rare; pyrophyllite and rectorite are generally absent. The b cell dimensions of K-white mica in Regional Assemblage B are in the range 9.02-9.06 Å. The two regional assemblages are found in contrasting geotectonic settings. Regional Assemblage A is characteristic of the extensional basin settings of Wales, the northern Lake District and the Isle of Man. These basins have a history of early burial metamorphism associated with extension, and syn-burial or post-burial intrusive and extrusive volcanic activity. Intermediate Na/K mica probably developed from hydrothermal fluids generated around submarine volcanic centres. Deep diagenetic and low anchizonal clay mineral in these basins may develop a bedding-parallel microfabric. Chlorite-mica stacks also occur in the extensional basins and the stacking planes represent another type of bedding-parallel microfabric. Both types of microfabric are non-tectonic and developed by burial during the extensional phase of basin evolution. Regional Assemblage B is developed in the plate-convergent settings of the Southern Uplands and the southern Lake District. In the accretionary complex of the Southern Uplands the processes of burial diagenesis, metamorphism and tectonism were synchronous events. In both plate- convergent basins, low temperatures and tectonic fabric-formation had an important role in clay mineral reactions, whereas hydrothermal fluids played no part in clay genesis.


1960 ◽  
Vol 40 (1) ◽  
pp. 1-14 ◽  
Author(s):  
S. Pawluk

Recent exploratory surveys in the northern sections of Alberta revealed many soils morphologically similar to podzols. A laboratory study was carried out to obtain a better understanding of the genesis and morphology of these soils.Chemical analyses showed the percentage base saturation and pH to be higher than for typical podzols.Physical analyses showed slight increases in clay content in the B horizons and decreases in the A horizons when compared to the parent material.From mineralogical studies of the profiles, the following weathering sequences were established: feldspars>quartz; chlorite>biotite>muscovite; [Formula: see text]. X-ray diffraction data showed illite, montmorillonite-illite mixed layering, montmorillonite, and kaolinite as being the principal clay minerals present in the A and C horizons. The clay mineral components of the B horizons were primarily chlorite-like with lesser amounts of kaolinite. Analyses indicated that the chlorite-like mineral lacked properties attributed to well crystallized chlorites and provided strong evidence in favour of authigenic origin.Data obtained in this study showed the genesis of these soils to be somewhat different from that reported for podzols elsewhere although the process of formation evidently was primarily chemical.


Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 309-354 ◽  
Author(s):  
C. V. Jeans

AbstractThe regional distribution, mineralogy, petrology and chemistry of the detrital and authigenic clay minerals associated with the Permo-Triassic strata (excluding the Rotliegend: see Ziegler, 2006; this volume), of the onshore and offshore regions of the British Isles are reviewed within their stratigraphical framework. The origin of these clay minerals is discussed in relation to current hypotheses on the developments of the Mg-rich clay mineral assemblages associated with the evaporitic red-bed Germanic facies of Europe and North Africa.Composite clay mineral successions are described for seven regions of the British Isles — the Western Approaches Trough; SW England; South Midlands; Central Midlands; the Cheshire Basin; NE Yorkshire; and the Central North Sea. The detrital clay mineral assemblages of the Early Permian strata are variable, consisting of mica, smectite, smectite-mica, kaolin and chlorite, whereas those of the Late Permian and the Trias are dominated by mica, usually in association with minor Fe-rich chlorite. The detrital mica consists of a mixture of penecontemporaneous ferric mica, probably of pedogenic origin, and recycled Pre-Permian mica. In the youngest Triassic strata (Rhaetian), the detrital clay assemblages may contain appreciable amounts of poorly defined collapsible minerals (irregular mixed-layer smectite-mica-vermiculite) and kaolin, giving them a Jurassic aspect. There are two types of authigenic clay mineral assemblages. Kaolin may occur as a late-stage diagenetic mineral where the original Permo-Triassic porewaters of the sediment have been replaced by meteoritic waters. A suite of early-stage diagenetic clay minerals, many of them Mg-rich, are linked to the evaporitic red-bed facies — these include sepiolite, palygorskite, smectite, irregular mixed- layer smectite-mica and smectite-chlorite, corrensite, chlorite and glauconite (sensu lato). The sandstones and mudstones of the onshore regions of the British Isles display little or no difference in their detrital and authigenic clay mineral assemblages. In contrast, the sandstones of the offshore regions (North Sea) show major differences with the presence of extensive chloritic cements containing Mg-rich and Al-rich chlorite, irregular mixed-layer serpentine-chlorite, and mica.


1973 ◽  
Vol 53 (2) ◽  
pp. 185-197 ◽  
Author(s):  
L. E. LUTWICK ◽  
J. F. DORMAAR

Three pairs of soil profiles developed on calcareous parent materials and two pairs of soil profiles developed on acidic parent materials were chosen morphologically in the field to represent Brunisolic/Luvisolic and Brunisolic/Podzolic features, respectively. Oxalate-, pyrophosphate-, and dithionite-extractable Fe were determined for each horizon. Also, Fe was partitioned into crystalline, "aged" and "gel" amorphous hydrous oxides, and organic forms. Humic acids extracted from each horizon with alkali were characterized by infrared absorption spectroscopy. Soils developed on acidic parent materials contained more extractable Fe than did those developed on calcareous parent materials. Only one horizon fitted the requirements of the chemical definition of a Bf horizon. All three reagents indicated zones of depletion and accumulation of Fe in soils developed on calcareous parent materials; oxalate and pyrophosphate did but dithionite did not show these relationships for soils developed on acidic parent materials. With exceptions, extractable Fe was correlated with clay content on the soils with calcareous parent material but was correlated with organic carbon on the soils with acidic parent materials. Well-crystallized Fe showed horizon differentiation in soils with calcareous parent materials and is therefore a weathering product. In soils with acidic parent materials, crystallized Fe was the source of weathering product forms of Fe. Humic acids of soils with acidic parent materials were more highly oxidized and hence more capable of reacting with Fe than were those of soils with calcareous parent materials.


Clay Minerals ◽  
2002 ◽  
Vol 37 (3) ◽  
pp. 413-428 ◽  
Author(s):  
E. Hrischeva ◽  
S. Gier

AbstractClay minerals in early Jurassic sequences of shales, siltstones and sandstones deposited in non-marine, transitional and shallow marine environments have been examined by X-ray diffraction, electron microscopy and chemical analysis to study the relationship between clay minerals, their environment of deposition and subsequent diagenetic modifications.The inherited clay mineral composition of the fine-grained sediments reflects the influence of climate, relief, source rocks and depositional processes. Inhomogeneous clay mineral assemblages, comprising abundant kaolinite and varying proportions of illite, I-S, chlorite and vermiculite, characterize fine-grained sediments from the non-marine and transitional environments. In shallow marine depositional environments clay mineral assemblages are more uniform, dominated by illite+I-S with minor kaolinite and chlorite.The principal diagenetic process affecting fine-grained sedimentary rocks is the smectite–illite transformation. In sandstones, the authigenic formation of kaolinite, chlorite and illite appears to have been primarily determined by the environment of deposition.


Clay Minerals ◽  
2001 ◽  
Vol 36 (4) ◽  
pp. 515-539 ◽  
Author(s):  
C. V. Jeans ◽  
J. G. Mitchell ◽  
M. J. Fisher ◽  
D. S. Wray ◽  
I. R. Hall

AbstractThe K/Ar characteristics of 53 clay assemblages (Triassic–Cretaceous), representing the detrital, volcanogenic and arid-facies clay mineral associations, are interpreted in relation to their mineralogy, chronostratic age and geological origins. The K-bearing mineral components of the 1–2 μm, 0.2–1 μm and <0.2 μm fractions of each clay assemblage together display one of two characteristic patterns of K2O and 40Ar values (the K/Ar signature of the assemblage) on a 40Ar/K2O correlation diagram. Interpretation of the K/Ar signatures indicates that: (1) all of these clay assemblages are apparently unaffected by burial diagenetic illitization; (2) the Jurassic and Cretaceous detrital clay assemblages are derived from the reworking of weathered Caledonian metasediments (420 500 Ma) and weathered kaolin-bearing sediments of Upper Devonian/ Carboniferous age; and (3) the role played by palaeoclimate in developing the pattern of clay minerals in the Mesozoic sediments of England is much less significant than previously believed.


Sign in / Sign up

Export Citation Format

Share Document