An evaluation of major element heterogeneity in the mantle sources of basalts

Understanding the evolution of the mantle requires a knowledge of the relative variations of the major elements, trace elements and isotopes in the mantle. Most of the evidence for mantle heterogeneity is based on variations in the trace element and isotopic ratios of basaltic rocks. These ratios are presumed to reflect variations in the mantle sources. To compare major element heterogeneities with trace element and isotopic heterogeneities, it is necessary that the major element abundances in basalts also reflect variations in the mantle sources. Probably the only major element for which this is so is iron. If a basalt has only undergone fractional crystallization of olivine, then the abundance of FeO in the basalt reflects the FeO/MgO ratio of the mantle source, the degree of melting, and the pressure at which melting occurs. Relative pressures and degrees of melting can often be constrained, so that variations in the abundances of FeO can be used to obtain information about variations in the FeO/MgO ratio of the mantle sources of basalts. Comparison of FeO contents with trace element and isotopic contents of basalts shows some striking correlations and leads to the following conclusions. 1. Parental magmas for Kilauean basalts from Hawaii may be related by different degrees of melting of a homogeneous, garnet-bearing source. 2. Mid-ocean ridge basalts from the North Atlantic show a negative correlation of La/Sm with FeO, suggesting that the sources that are most enriched in incompatible trace elements are most depleted in FeO relative to MgO, and are probably also depleted in the other components of basalt. This correlation does not apply to the entire suboceanic mantle. 3. A comparison of tholeiites from near the Azores and from Hawaii shows that sources with similar Nd and Sr isotope ratios may have undergone distinctly different histories in the development of their major and trace element abundances. 4. Ocean island tholeiites tend to be more enriched in FeO than ocean floor tholeiites. Either the ocean island sources have greater FeO/MgO ratios, or melting begins at significantly greater pressures beneath ocean islands than beneath ocean ridges. 5. Major element variations in the mantle are controlled mainly by tectonics and the addition or removal of silicate melts. Trace element variations, however, may be controlled by the addition or removal of fluids as well. Thus major elements, trace elements and isotopes may each give a different perspective important to the understanding of the evolution of the mantle.

F, Cl and Br contents of tholeiitic volcanic glasses dredged along the Mid-Atlantic Ridge from 53° to 28° N, including the transect over the Azores Plateau, are reported. The halogen variations parallel those of 87 Sr/ 86 Sr, La/Sm or other incompatible elements of varying volatility. The latitudinal halogen variation pattern is not obliterated if only Mg-rich lavas are considered. Variations in extent of low-pressure fractional crystallization or partial melting conditions do not appear to be the primary cause of the halogen variations. Instead, mantle-derived heterogeneities in halogens, with major enrichments in the mantle beneath the Azores, are suggested. The Azores platform is not only a ‘hotspot’ but also a ‘wetspot’, which may explain the unusually intense Azores volcanic activity. The magnitude of the halogen and incompatible element enrichments beneath the Azores appear strongly dependent on the size of these anions and cations, but independent of relative volatility at low pressure. The large anions Cl and Br behave similarly to large cations Rb, Cs and Ba, and the smaller anion F similarly to Sr and P. Processes involving crystal and liquid (fluid and/or melt), CO 2 rather than H 2 O dominated, seem to have produced these largescale mantle heterogeneities. Geochemical ‘anomalies’ beneath the Azores are no longer apparent for coherent element pair ratios of similar ionic size. Values of such ‘unfractionated’ coherent trace element ratios provide an indication of the mantle composition and its nature before fractionation event (s) which produced the inferred isotopic and trace element heterogeneities apparently present beneath the North Atlantic. The relative trace element composition of this precursor mantle does not resemble that of carbonaceous chondrites except for refractory trace element pairs of similar ionic size. It is strongly depleted in halogens, and to a lesser extent in large alkali ions Rb and Cs relative to refractory Ba. These relative depletions are comparable within a factor of 5 to Ganapathy & Anders’s estimates for the bulk Earth, with the exception of Cs. There is also evidence for removal of phosphorus into the iron core during its formation. With the exception of San Miguel, alkali basalts from the Azores Islands appear to have been derived from the same mantle source as tholeiitic basalts from the ridge transect over the Azores Platform but by half as much degree of partial melting. The Azores subaerial basalts seem to have been partly degassed in Cl, Br and F, in decreasing order of intensity. A working model involving metasomatism from release of fluids at phase transformation during convective mantle overturns is proposed to explain the formation of mantle plumes or diapirs enriched in larger relative to smaller halogen and other incompatible trace elements. The model is ad hoc and needs testing. However, any other dynamical model accounting for the 400 -1000 km long gradients in incompatible trace elements, halogens and radiogenic isotopes along the Mid-Atlantic Ridge should, at some stage, require either (1) some variable extent of mixing or (2) differential migration of liquid relative to crystals followed by re-equilibration (or both), as a diffusion controlled mechanism over such large distances is clearly ruled out, given the age of the Earth.


The early major products of Tertiary volcanicity in both Skye and Mull are transitional basic lavas, similar in their major-element chemistry to world-wide alkali basalt series. In contrast, their contents of incompatible trace elements bear more resemblance to those of olivine tholeiites. The Mull basalts have similar ranges of silica saturation, Mg/(Mg+Fe), Y and Yb, but lower overall abundance ranges of strongly incompatible elements than the Skye basalts. The variation of incompatible elements in the Mull and Skye lavas is consistent with a model of a mantle source from which a small amount of melt (no more than 1 % ?) had been extracted, with the pre-Tertiary upper-mantle fusion beneath Mull slightly greater than beneath Skye. Chemical and tectonic considerations suggest that this mantle was neither residual from the formation of the Archaean Lewisian complex, nor emplaced as a result of tension associated with the Gainozoic rifting of the North Atlantic. Data on major and trace elements for a mafic alkalic dyke of the Permian swarms that pass through western Scotland show that these have the requisite geochemical characteristics to have caused this depletion. Such dykes are more abundant in the region of Mull than Skye.


The Holocene ◽  
2011 ◽  
Vol 21 (7) ◽  
pp. 1037-1048 ◽  
Author(s):  
Bergrún Arna Óladóttir ◽  
Olgeir Sigmarsson ◽  
Gudrún Larsen ◽  
Jean-Luc Devidal

The Holocene eruption history of subglacial volcanoes in Iceland is largely recorded by their tephra deposits. The numerous basaltic tephra offer the possibility to make the tephrochronology in the North Atlantic area more detailed and, therefore, more useful as a tool not only in volcanology but also in environmental and archaeological studies. The source of a tephra is established by mapping its distribution or inferred via compositional fingerprinting, mainly based on major-element analyses. In order to improve the provenance determinations for basaltic tephra produced at Grímsvötn, Bárdarbunga and Kverkfjöll volcanic systems in Iceland, 921 samples from soil profiles around the Vatnajökull ice-cap were analysed for major-element concentrations by electron probe microanalysis. These samples are shown to represent 747 primary tephra units. The tephra erupted within each of these volcanic system has similar chemical characteristics. The major-element results fall into three distinctive compositional groups, all of which show regular decrease of MgO with increasing K2O concentrations. The new analyses presented here considerably improve the compositional distinction between products of the three volcanic systems. Nevertheless, slight overlap of the compositional groups for each system still remains. In situ trace-element analyses by laser-ablation-inductively-coupled-plasma-mass-spectrometry were applied for better provenance identification for those tephra having similar major-element composition. Three trace-element ratios, Rb/Y, La/Yb and Sr/Th, proved particularly useful. Significantly higher La/Yb distinguishes the Grímsvötn basalts from those of Bárdarbunga and Rb/Y values differentiate the basalts of Grímsvötn and Kverkfjöll. Additionally, the products of Bárdarbunga, Grímsvötn and Kverkfjöll form distinct compositional fields on a Sr/Th versus Th plot. Taken together, the combined use of major- and trace-element analyses in delineating the provenance of basaltic tephra having similar major-element composition significantly improves the Holocene tephra record as well as the potential for correlations with tephra from outside Iceland.


The alkaline rocks of Carboniferous to Permian age in the Midland Valley province range in composition from hypersthene-normative, transitional basalts to strongly undersaturated basanitic and nephelinitic varieties. They were formed by varying degrees of equilibrium partial melting of a phlogopite peridotite mantle. Ba, Ce, Nb, P, Sr and Zr were strongly partitioned into the liquid during melting; K and Rb were retained by residual phlogopite for small degrees of melting only. The composition of the mantle source is inferred to have been broadly similar to that from which oceanic alkaline basalts are currently being generated. It was, however, heterogeneous as regards distribution of the incompatible trace elements, with up to fourfold variations in elemental abundances and ratios. The mantle beneath the province may be divisible into several areas, of some hundreds of square kilometres each, which retained a characteristic incompatible element chemistry for up to 50 Ma and which imparted a distinctive chemistry to all the basic magmas generated within them.


2016 ◽  
Vol 154 (1) ◽  
pp. 68-86 ◽  
Author(s):  
PRANJIT HAZARIKA ◽  
DEWASHISH UPADHYAY ◽  
KAMAL LOCHAN PRUSETH

AbstractMica pegmatites from the Bihar Mica Belt contain three distinct generations of tourmaline. The major-element composition, substitution vectors and trajectories within each group are different, which indicates that the three types of tourmalines are not a part of one evolutionary series. Rather, the differences in their chemistries as well their mutual microtextural relations, can be best explained by growth of tourmaline from pegmatitic melts followed by episodic re-equilibration during discrete geological events. The euhedral, coarse-grained brown type I tourmaline cores have relatively high Ca, Mg (XMgc. 0.37) and Al with correlated variation in Sr, Sc, Ti, Zr, Y, Cr, Pb and Rare Earth elements (REEs). They are inferred to have crystallized from pegmatitic melts. Monazites included within these tourmalines give chemical ages of 1290−1242 Ma interpreted to date the crystallization of the pegmatitic tourmaline. The bluish type II and greyish type III tourmalines with low Ca and Mg contents (XMg = 0.16−0.27) and high Zn, Sn, Nb, Ta and Na, formed by pseudomorphic partial replacement of the pegmatitic tourmaline via fluid-mediated coupled dissolution–reprecipitation, are ascribed to a hydrothermal origin. The ages obtained from monazites included in these tourmalines indicate two alteration events at c. 1100 Ma and c. 950 Ma. The correlated variation of Ca, Mg and Fe and the trace elements Sr, Sn, Sc, Zn and REE within the tourmalines indicates that the trace-element concentrations of tourmaline are controlled not only by the fluid chemistry but also by coupled substitutions with major-element ions.


2021 ◽  
Author(s):  
Lingquan Zhao ◽  
Sumit Chakraborty ◽  
Hans-Peter Schertl

<p>The Xigaze ophiolite (Tibet), which occurs in the central segment of the Yarlung Zangbo Suture Zone, exposes a complete portion of a mantle sequence that consists essentially of fresh as well as serpentinized peridotites. We studied a sequence beneath the crustal section that exposes fresh, Cpx-bearing harzburgites and dunites that are underlain by serpentinized Cpx-bearing harzburgites and dunites. The rocks at the bottom are crosscut by dykes that have undergone different degrees of rodingitization. The modal compositions of peridotite from both fresh and serpentinized sections plot in abyssal upper mantle fields, with clinopyroxene modes less than 5 vol. %. Although harzburgites and dunites indicate that melt has been lost relative to primitive mantle compositions, the trace element patterns carry signatures of enrichment in incompatible elements, such as (i) “bowl-shaped” patterns of trace elements in silicate-Earth normalized spider diagrams, (ii) positive anomalies in highly incompatible trace elements such as Rb, Th, U, Ta, and (iii) enrichment of LREE in the clinopyroxenes from dunites and harzburgites. These features are indicative of complex melt transfer processes and cannot be produced by simple melt extraction. Petrographic studies reveal that harzburgite and dunite contain interstitial polyphase aggregates of olivine + Cpx + spinel + Opx and olivine + Cpx + Spinel, respectively. Experimental studies (e.g. Morgan and Liang, 2003) suggest that these aggregates represent frozen melt-rich components, indicating that fertile melt was percolating through the depleted harzburgite – dunite matrix. Presence of such “melt pods” would explain the trace element enrichment patterns of the bulk rock, as well as features such as reverse zoning (core: Cr, Fe<sup>2+</sup> rich, rim: Al, Mg rich) of spinels in polyphase aggregates in fresh dunites. These results show that melt extraction from the mantle is not a single stage process, and that evidence of multiple melt pulses that propagated through a rock are preserved in the petrographic features as well as in the form of chemical signatures that indicate refertilization of initially depleted rocks.</p>


The most important process affecting both major and trace-element concentrations in the mantle and crust is melting producing silicate liquids which then migrate. Another process whose effects are becoming more apparent is the transport of elements by CO 2 - and H 2 O-rich fluids. Due to the relatively small amounts of fluids involved they have but little effect on the major-element abundances but may severely affect minor- and trace-element abundances in their source and the material through which they travel. The Archaean crust was a density filter which reduced the possibility of komatiite or high FeO melts with relative densities greater than about 3.0 from reaching the surface. Those melts retained in the lower crust or at the crust-mantle boundary would have enhanced the possibility of melting in the lower crust. The high FeO melts may have included the Archaean equivalents of alkali basalt whose derivatives may form an important component in the Archaean crust. The occurrence of ultramafic to basic to alkaline magmas in some Archaean greenstone belts is an assemblage most typical of modern ocean-island suites in continental environments. The rock types in the assemblage were modified by conditions of higher heat production during the Archaean and thus greater extents of melting and melting at greater depths. If modern ocean-island suites are associated with mantle plumes, which even now may be an important way to transport heat upward from the deeper mantle, it is suggested that during the Archaean mantle plumes were an important factor in the evolution of the continental crust. It appears that the Archaean continental crust was of comparable thickness to that of the present based on geobarometeric data. If the freeboard concept applied then, this would suggest that plate tectonics was also an active process during the Archaean. If so, it is probably no more realistic to assume that all Archaean greenstone belts had a similar tectonic setting than to assume that all modern occurrences of basic rocks have a common tectonic setting.


1982 ◽  
Vol 19 (3) ◽  
pp. 385-397 ◽  
Author(s):  
G. H. Gale ◽  
J. A. Pearce

Representative samples of Caledonian greenstones from the Grong, Joma, Løkken, Støren, Stavenes, and Bømlo areas in central and southern Norway have been analysed for major elements and over 20 trace elements. Ocean-floor tholeiite-normalized trace-element patterns and chondrite-normalized rare-earth patterns both provide clues to the genesis, original tectonic setting, petrologic character, and effects of alteration of these greenstones. We conclude that the Støren, Stavenes, and Løkken greenstones were generated at spreading axes within the Caledonian ocean, the Grong and possibly the Bømlo submarine greenstones were erupted in an island-arc system, and the Joma and Bømlo subaerial greenstones were erupted in a within-plate setting. The Løkken greenstones may have been generated in a marginal basin, whereas those from Støren and Stavenes were probably generated at a rapidly spreading axis in a major ocean.


1991 ◽  
Vol 28 (9) ◽  
pp. 1429-1443 ◽  
Author(s):  
Luc Harnois ◽  
John M. Moore

Samples of two subalkaline metavolcanic suites, the Tudor formation (ca. 1.28 Ga) and the overlying Kashwakamak formation, have been analysed for major elements and 27 trace elements (including rare-earth elements). The Tudor formation is tholeiitic and contains mainly basaltic flows, whereas the Kashwakamak formation is calc-alkaline and contains mainly andesitic rocks with minor felsic rocks. The succession has been regionally metamorphosed to upper greenschist – lower amphibolite facies. Trace-element abundances and ratios indicate that rocks of the Tudor and Kashwakamak formations are island-arc type. Geochemical modelling using rare-earth elements, Zr, Ti, and Y indicates that the Tudor volcanic rocks are not derived from a single parental magma through simple fractional crystallization. Equilibrium partial melting of a heterogeneous Proterozoic upper mantle can explain the trace-element abundances and ratios of Tudor formation volcanic rocks. The intermediate to felsic rocks of the Kashwakamak formation appear to have been derived from a separate partial melting event. The data are consistent with an origin of the arc either on oceanic crust or on thinned continental crust, and with accretion of the arc to a continental margin between the time of extrusion of Tudor volcanic rocks and that of Kashwakamak volcanic rocks.


Sign in / Sign up

Export Citation Format

Share Document