The structure of the turbulent atmospheric boundary layer

During the Joint Air-Sea Interaction Experiment (JASIN), mean flow and turbulent fluctuations were measured throughout the depth of the atmospheric boundary layer by shipborne surface instrumentation, multiple-instrument packages suspended from tethered balloons and research aircraft flying in low level formation. These enabled both individual localized events and representative area-average (70 km x 70 km) measurements to be investigated. The results are summarized and show that continuous small-scale turbulent mixing was generally confined to an Ekman layer a few hundred metres deep. The structure of this layer is examined in detail, particularly the momentum balance. Spectral analysis reveals two energy-containing regions, one of which, at higher wavenumbers, scales with the Ekman layer depth and carries most of the vertical fluxes. Direct coupling between the Ekman layer and the overlying atmosphere is weak and appears to be strongly dependent on cloud processes, which are intermittent and irregularly distributed on the scale of these measurements.

1997 ◽  
Vol 333 ◽  
pp. 97-123 ◽  
Author(s):  
RALPH C. FOSTER

The optimal non-modal perturbations for the neutrally stratified boundary layer in a rotating frame of reference (Ekman layer) are found for a Reynolds number characteristic of the planetary boundary layer (PBL). Two classes of non-modal instabilities are found: evanescent perturbations, with lifetimes up to about one hour, and growing instabilities. The important difference between these types of perturbations is whether or not the optimal non-modal perturbation projects onto an unstable normal mode. The evanescent instabilities are of smaller scale and are oriented at larger angles to the surface isobars compared to either the growing perturbations or normal-mode instabilities. The optimal perturbations take the form of vortices at an acute angle to the geostrophic flow that rapidly transform into streaks with associated overturning motion. The energetics of the optimal perturbations are investigated in detail to clarify the instability mechanism throughout its evolution.Nonlinear stability analyses of the neutrally stratified Ekman layer have shown that the normal-mode instability will equilibrate with the mean flow to form boundary-layer-scale equilibrium roll eddies aligned closely with the geostrophic flow. However, numerical simulations do not generate these rolls in neutral stratification although they often realize small-scale near-surface streaks oriented at large angles to the geostrophic wind. The evanescent optimal perturbations bear a close resemblance to the simulated streaks. It is proposed that the non-model perturbation mechanism is associated with the streaks.


2021 ◽  
Author(s):  
Julian Quimbayo-Duarte ◽  
Juerg Schmidli

<p>An accurate representation of the momentum budget in numerical models is essential in the quest for reliable weather forecasting, from large scales (climate models) to small scales (numerical weather prediction models, NWP). It is well known that orographic waves play an important role in large-scale circulation. The vertical propagation of such waves is associated with a vertical flux of horizontal momentum, which may be transferred to the mean flow by wave-mean flow interaction and wave-breaking (Sandu et al., 2019). The orography scales inducing such phenomena are often smaller than the model resolution, even for NWP models, leading to the need for parameterisation schemes for orographic drag. Yet, such parameterization in current models is fairly limited (Vosper et al., 2020). The present work aims to contribute to an improved understanding and parameterization of the impact of small-scale orography on the lower atmosphere with a focus on the stable atmospheric boundary layer.</p><p>As a first step, an idealized set of experiments has been designed to explore the capabilities of the Icosahedral Nonhydrostatic model in its large eddy simulation mode (ICON-LES, Dipankar et al., 2015) to represent turbulence processes in the stably-stratified atmosphere. Initial experiments testing the model performance over flat terrain (GABLS experiment, Beare et al., 2006), orographic wave generation (shallow bell-shaped topography, Xue et al., 2000) and moderate complex terrain (U-shaped valley, Burns and Chemel 2014) have been conducted. The results demonstrate that ICON-LES adequately represents the boundary layer processes for the investigated cases in comparison to the literature.</p><p>In a second step, an idealized set of experiments of atmospheric flow over idealized sinusoidal and multiscale terrain has been designed to study the impact of the orographically-induced gravity waves on the total surface drag and the vertical flux of horizontal momentum. The influence of different atmospheric conditions is assessed by varying the background wind speed and the temperature stratification at the initial time.</p>


2019 ◽  
Author(s):  
Barbara Altstädter ◽  
Konrad Deetz ◽  
Bernhard Vogel ◽  
Karmen Babić ◽  
Cheikh Dione ◽  
...  

Abstract. The vertical variability of the black carbon (BC) mass concentration in the atmospheric boundary layer (ABL) is analysed during the West-African Monsoon (WAM) season. BC was measured with a micro aethalometer (model AE51, AethLabs) integrated in the payload bay of the unmanned research aircraft ALADINA (Application of Light-weight Aircraft for Detecting IN situ Aerosol) as part of the field experiment of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project. In total, 53 measurement flights were performed at the local airfield of Save, Benin, in the period of 2–16 July 2016. The mean results show a high variability of BC (1.79 to 2.42 ± 0.31 μg/m3) influenced by the stratification of the ABL during the WAM. The model COSMO-ART (Consortium for Small-scale Modelling–Aerosols and Reactive Trace gases) was applied for the field campaign period and used in order to investigate possible sources of the measured BC. The model output was compared with the BC data on two selected measurement days (14 and 15 July 2016). The modeled vertical profiles of BC show that the observed BC was already altered, as the size was mainly dominated by the accumulation mode. Further, the calculated vertical transects of wind speed and BC showed that the measured BC layer was transported from the south with maritime inflow, but was mixed vertically after to the onset of the nocturnal low-level jet (NLLJ) at the measurement site. The validations and the ground observations of gas concentrations NOx and CO confirm that primary emission could be excluded during the case study, in contrast to initially expected. The case underlines the important role of BC transport processes in the WAM area.


2014 ◽  
Vol 755 ◽  
pp. 654-671 ◽  
Author(s):  
Enrico Deusebio ◽  
Erik Lindborg

AbstractHelicity, which is defined as the scalar product of velocity and vorticity, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\mathcal{H}} = {\boldsymbol {u}} \boldsymbol {\cdot }\boldsymbol{\omega}$, is an inviscidly conserved quantity in a barotropic fluid. Mean helicity is zero in flows that are parity invariant. System rotation breaks parity invariance and has therefore the potential of giving rise to non-zero mean helicity. In this paper we study the helicity dynamics in the incompressible Ekman boundary layer. Evolution equations for the mean field helicity and the mean turbulent helicity are derived and it is shown that pressure flux injects helicity at a rate $ 2 \varOmega G^2 $ over the total depth of the Ekman layer, where $ G $ is the geostrophic wind far from the wall and $ {\boldsymbol{\Omega}} = \varOmega {\boldsymbol {e}}_y $ is the rotation vector and $ {\boldsymbol {e}}_y $ is the wall-normal unit vector. Thus right-handed/left-handed helicity will be injected if $ \varOmega $ is positive/negative. We also show that in the uppermost part of the boundary layer there is a net helicity injection with opposite sign as compared with the totally integrated injection. Isotropic relations for the helicity dissipation and the helicity spectrum are derived and it is shown that it is sufficient to measure two transverse velocity components and use Taylor’s hypothesis in the mean flow direction in order to measure the isotropic helicity spectrum. We compare the theoretical predictions with a direct numerical simulation of an Ekman boundary layer and confirm that there is a preference for right-handed helicity in the lower part of the Ekman layer and left-handed helicity in the uppermost part when $ \varOmega > 0 $. In the logarithmic range, the helicity dissipation conforms to isotropic relations. On the other hand, spectra show significant departures from isotropic conditions, suggesting that the Reynolds number considered in the study is not sufficiently large for isotropy to be valid in a wide range of scales. Our analytical and numerical results strongly suggest that there is a turbulent helicity cascade of right-handed helicity in the logarithmic range of the atmospheric boundary layer when $\varOmega >0$, consistent with recent measurements by Koprov, Koprov, Ponomarev & Chkhetiani (Dokl. Phys., vol. 50, 2005, pp. 419–422). The isotropic relations which are derived may facilitate future measurements of the helicity spectrum in the atmospheric boundary layer as well as in controlled wind tunnel experiments.


2021 ◽  
Author(s):  
Ginaldi Ari Nugroho ◽  
Kosei Yamaguchi ◽  
Eiichi Nakakita ◽  
Masayuki K. Yamamoto ◽  
Seiji Kawamura ◽  
...  

<p>Detailed observation of small scale perturbation in the atmospheric boundary layer during the first generated cumulus cloud are conducted. Our target is to study this small scale perturbation, especially related to the thermal activity at the first generated cumulus cloud. The observation is performed during the daytime on August 17, 2018, and September 03, 2018. Location is focused in the urban area of Kobe, Japan. High-resolution instruments such as Boundary Layer Radar, Doppler Lidar, and Time Lapse camera are used in this observation. Boundary Layer Radar, and Doppler Lidar are used for clear air observation. Meanwhile Time Lapse Camera are used for cloud existence observation. The atmospheric boundary layer structure is analyzed based on vertical velocity profile, variance, skewness, and estimated atmospheric boundary layer height. Wavelet are used to observe more of the period of the thermal activity. Furthermore, time correlation between vertical velocity time series from height 0.3 to 2 km and image pixel of generated cloud time series are also discussed in this study.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 416 ◽  
Author(s):  
Astrid Lampert ◽  
Barbara Altstädter ◽  
Konrad Bärfuss ◽  
Lutz Bretschneider ◽  
Jesper Sandgaard ◽  
...  

Unmanned aerial systems (UAS) fill a gap in high-resolution observations of meteorological parameters on small scales in the atmospheric boundary layer (ABL). Especially in the remote polar areas, there is a strong need for such detailed observations with different research foci. In this study, three systems are presented which have been adapted to the particular needs for operating in harsh polar environments: The fixed-wing aircraft M 2 AV with a mass of 6 kg, the quadrocopter ALICE with a mass of 19 kg, and the fixed-wing aircraft ALADINA with a mass of almost 25 kg. For all three systems, their particular modifications for polar operations are documented, in particular the insulation and heating requirements for low temperatures. Each system has completed meteorological observations under challenging conditions, including take-off and landing on the ice surface, low temperatures (down to −28 ∘ C), icing, and, for the quadrocopter, under the impact of the rotor downwash. The influence on the measured parameters is addressed here in the form of numerical simulations and spectral data analysis. Furthermore, results from several case studies are discussed: With the M 2 AV, low-level flights above leads in Antarctic sea ice were performed to study the impact of areas of open water within ice surfaces on the ABL, and a comparison with simulations was performed. ALICE was used to study the small-scale structure and short-term variability of the ABL during a cruise of RV Polarstern to the 79 ∘ N glacier in Greenland. With ALADINA, aerosol measurements of different size classes were performed in Ny-Ålesund, Svalbard, in highly complex terrain. In particular, very small, freshly formed particles are difficult to monitor and require the active control of temperature inside the instruments. The main aim of the article is to demonstrate the potential of UAS for ABL studies in polar environments, and to provide practical advice for future research activities with similar systems.


2019 ◽  
Vol 865 ◽  
pp. 1085-1109 ◽  
Author(s):  
Yutaro Motoori ◽  
Susumu Goto

To understand the generation mechanism of a hierarchy of multiscale vortices in a high-Reynolds-number turbulent boundary layer, we conduct direct numerical simulations and educe the hierarchy of vortices by applying a coarse-graining method to the simulated turbulent velocity field. When the Reynolds number is high enough for the premultiplied energy spectrum of the streamwise velocity component to show the second peak and for the energy spectrum to obey the$-5/3$power law, small-scale vortices, that is, vortices sufficiently smaller than the height from the wall, in the log layer are generated predominantly by the stretching in strain-rate fields at larger scales rather than by the mean-flow stretching. In such a case, the twice-larger scale contributes most to the stretching of smaller-scale vortices. This generation mechanism of small-scale vortices is similar to the one observed in fully developed turbulence in a periodic cube and consistent with the picture of the energy cascade. On the other hand, large-scale vortices, that is, vortices as large as the height, are stretched and amplified directly by the mean flow. We show quantitative evidence of these scale-dependent generation mechanisms of vortices on the basis of numerical analyses of the scale-dependent enstrophy production rate. We also demonstrate concrete examples of the generation process of the hierarchy of multiscale vortices.


Sign in / Sign up

Export Citation Format

Share Document