Structure and energetics of optimal Ekman layer perturbations

1997 ◽  
Vol 333 ◽  
pp. 97-123 ◽  
Author(s):  
RALPH C. FOSTER

The optimal non-modal perturbations for the neutrally stratified boundary layer in a rotating frame of reference (Ekman layer) are found for a Reynolds number characteristic of the planetary boundary layer (PBL). Two classes of non-modal instabilities are found: evanescent perturbations, with lifetimes up to about one hour, and growing instabilities. The important difference between these types of perturbations is whether or not the optimal non-modal perturbation projects onto an unstable normal mode. The evanescent instabilities are of smaller scale and are oriented at larger angles to the surface isobars compared to either the growing perturbations or normal-mode instabilities. The optimal perturbations take the form of vortices at an acute angle to the geostrophic flow that rapidly transform into streaks with associated overturning motion. The energetics of the optimal perturbations are investigated in detail to clarify the instability mechanism throughout its evolution.Nonlinear stability analyses of the neutrally stratified Ekman layer have shown that the normal-mode instability will equilibrate with the mean flow to form boundary-layer-scale equilibrium roll eddies aligned closely with the geostrophic flow. However, numerical simulations do not generate these rolls in neutral stratification although they often realize small-scale near-surface streaks oriented at large angles to the geostrophic wind. The evanescent optimal perturbations bear a close resemblance to the simulated streaks. It is proposed that the non-model perturbation mechanism is associated with the streaks.

During the Joint Air-Sea Interaction Experiment (JASIN), mean flow and turbulent fluctuations were measured throughout the depth of the atmospheric boundary layer by shipborne surface instrumentation, multiple-instrument packages suspended from tethered balloons and research aircraft flying in low level formation. These enabled both individual localized events and representative area-average (70 km x 70 km) measurements to be investigated. The results are summarized and show that continuous small-scale turbulent mixing was generally confined to an Ekman layer a few hundred metres deep. The structure of this layer is examined in detail, particularly the momentum balance. Spectral analysis reveals two energy-containing regions, one of which, at higher wavenumbers, scales with the Ekman layer depth and carries most of the vertical fluxes. Direct coupling between the Ekman layer and the overlying atmosphere is weak and appears to be strongly dependent on cloud processes, which are intermittent and irregularly distributed on the scale of these measurements.


2017 ◽  
Vol 56 (11) ◽  
pp. 3035-3047 ◽  
Author(s):  
Steven J. A. van der Linden ◽  
Peter Baas ◽  
J. Antoon van Hooft ◽  
Ivo G. S. van Hooijdonk ◽  
Fred C. Bosveld ◽  
...  

AbstractGeostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, the Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin–Obukhov stability parameter (z/L), or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speeds are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics and composite profiles of wind and temperature are systematically investigated. The classification is found to result in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds, turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a comprehensive description of other thermodynamic processes such as soil heat conduction and radiative transfer.


2019 ◽  
Vol 865 ◽  
pp. 1085-1109 ◽  
Author(s):  
Yutaro Motoori ◽  
Susumu Goto

To understand the generation mechanism of a hierarchy of multiscale vortices in a high-Reynolds-number turbulent boundary layer, we conduct direct numerical simulations and educe the hierarchy of vortices by applying a coarse-graining method to the simulated turbulent velocity field. When the Reynolds number is high enough for the premultiplied energy spectrum of the streamwise velocity component to show the second peak and for the energy spectrum to obey the$-5/3$power law, small-scale vortices, that is, vortices sufficiently smaller than the height from the wall, in the log layer are generated predominantly by the stretching in strain-rate fields at larger scales rather than by the mean-flow stretching. In such a case, the twice-larger scale contributes most to the stretching of smaller-scale vortices. This generation mechanism of small-scale vortices is similar to the one observed in fully developed turbulence in a periodic cube and consistent with the picture of the energy cascade. On the other hand, large-scale vortices, that is, vortices as large as the height, are stretched and amplified directly by the mean flow. We show quantitative evidence of these scale-dependent generation mechanisms of vortices on the basis of numerical analyses of the scale-dependent enstrophy production rate. We also demonstrate concrete examples of the generation process of the hierarchy of multiscale vortices.


2006 ◽  
Vol 134 (1) ◽  
pp. 294-310 ◽  
Author(s):  
Belay Demoz ◽  
Cyrille Flamant ◽  
Tammy Weckwerth ◽  
David Whiteman ◽  
Keith Evans ◽  
...  

Abstract A detailed analysis of the structure of a double dryline observed over the Oklahoma panhandle during the first International H2O Project (IHOP_2002) convective initiation (CI) mission on 22 May 2002 is presented. A unique and unprecedented set of high temporal and spatial resolution measurements of water vapor mixing ratio, wind, and boundary layer structure parameters were acquired using the National Aeronautics and Space Administration (NASA) scanning Raman lidar (SRL), the Goddard Lidar Observatory for Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE), respectively. These measurements are combined with the vertical velocity measurements derived from the National Center for Atmospheric Research (NCAR) Multiple Antenna Profiler Radar (MAPR) and radar structure function from the high-resolution University of Massachusetts frequency-modulated continuous-wave (FMCW) radar to reveal the evolution and structure of the late afternoon double-dryline boundary layer. The eastern dryline advanced and then retreated over the Homestead profiling site in the Oklahoma panhandle, providing conditions ripe for a detailed observation of the small-scale variability within the boundary layer and the dryline. In situ aircraft data, dropsonde and radiosonde data, along with NCAR S-band dual-polarization Doppler radar (S-Pol) measurements, are also used to provide the larger-scale picture of the double-dryline environment. Moisture and temperature jumps of about 3 g kg−1 and 1–2 K, respectively, were observed across the eastern radar fine line (dryline), more than the moisture jumps (1–2 g kg−1) observed across the western radar fine line (secondary dryline). Most updraft plumes observed were located on the moist side of the eastern dryline with vertical velocities exceeding 3 m s−1 and variable horizontal widths of 2–5 km, although some were as wide as 7–8 km. These updrafts were up to 1.5 g kg−1 moister than the surrounding environment. Although models suggested deep convection over the Oklahoma panhandle and several cloud lines were observed near the dryline, the dryline itself did not initiate any storms over the intensive observation region (IOR). Possible reasons for this lack of convection are discussed. Strong capping inversion and moisture detrainment between the lifting condensation level and the level of free convection related to an overriding drier air, together with the relatively small near-surface moisture values (less than 10 g kg−1), were detrimental to CI in this case.


2012 ◽  
Vol 140 (9) ◽  
pp. 3017-3038 ◽  
Author(s):  
Anna C. Fitch ◽  
Joseph B. Olson ◽  
Julie K. Lundquist ◽  
Jimy Dudhia ◽  
Alok K. Gupta ◽  
...  

Abstract A new wind farm parameterization has been developed for the mesoscale numerical weather prediction model, the Weather Research and Forecasting model (WRF). The effects of wind turbines are represented by imposing a momentum sink on the mean flow; transferring kinetic energy into electricity and turbulent kinetic energy (TKE). The parameterization improves upon previous models, basing the atmospheric drag of turbines on the thrust coefficient of a modern commercial turbine. In addition, the source of TKE varies with wind speed, reflecting the amount of energy extracted from the atmosphere by the turbines that does not produce electrical energy. Analyses of idealized simulations of a large offshore wind farm are presented to highlight the perturbation induced by the wind farm and its interaction with the atmospheric boundary layer (BL). A wind speed deficit extended throughout the depth of the neutral boundary layer, above and downstream from the farm, with a long wake of 60-km e-folding distance. Within the farm the wind speed deficit reached a maximum reduction of 16%. A maximum increase of TKE, by nearly a factor of 7, was located within the farm. The increase in TKE extended to the top of the BL above the farm due to vertical transport and wind shear, significantly enhancing turbulent momentum fluxes. The TKE increased by a factor of 2 near the surface within the farm. Near-surface winds accelerated by up to 11%. These results are consistent with the few results available from observations and large-eddy simulations, indicating this parameterization provides a reasonable means of exploring potential downwind impacts of large wind farms.


2007 ◽  
Vol 124 (3) ◽  
pp. 405-424 ◽  
Author(s):  
Inanc Senocak ◽  
Andrew S. Ackerman ◽  
Michael P. Kirkpatrick ◽  
David E. Stevens ◽  
Nagi N. Mansour

2021 ◽  
Author(s):  
Julian Quimbayo-Duarte ◽  
Juerg Schmidli

<p>An accurate representation of the momentum budget in numerical models is essential in the quest for reliable weather forecasting, from large scales (climate models) to small scales (numerical weather prediction models, NWP). It is well known that orographic waves play an important role in large-scale circulation. The vertical propagation of such waves is associated with a vertical flux of horizontal momentum, which may be transferred to the mean flow by wave-mean flow interaction and wave-breaking (Sandu et al., 2019). The orography scales inducing such phenomena are often smaller than the model resolution, even for NWP models, leading to the need for parameterisation schemes for orographic drag. Yet, such parameterization in current models is fairly limited (Vosper et al., 2020). The present work aims to contribute to an improved understanding and parameterization of the impact of small-scale orography on the lower atmosphere with a focus on the stable atmospheric boundary layer.</p><p>As a first step, an idealized set of experiments has been designed to explore the capabilities of the Icosahedral Nonhydrostatic model in its large eddy simulation mode (ICON-LES, Dipankar et al., 2015) to represent turbulence processes in the stably-stratified atmosphere. Initial experiments testing the model performance over flat terrain (GABLS experiment, Beare et al., 2006), orographic wave generation (shallow bell-shaped topography, Xue et al., 2000) and moderate complex terrain (U-shaped valley, Burns and Chemel 2014) have been conducted. The results demonstrate that ICON-LES adequately represents the boundary layer processes for the investigated cases in comparison to the literature.</p><p>In a second step, an idealized set of experiments of atmospheric flow over idealized sinusoidal and multiscale terrain has been designed to study the impact of the orographically-induced gravity waves on the total surface drag and the vertical flux of horizontal momentum. The influence of different atmospheric conditions is assessed by varying the background wind speed and the temperature stratification at the initial time.</p>


2020 ◽  
Vol 77 (8) ◽  
pp. 2921-2940
Author(s):  
Amandine Kaiser ◽  
Davide Faranda ◽  
Sebastian Krumscheid ◽  
Danijel Belušić ◽  
Nikki Vercauteren

Abstract Many natural systems undergo critical transitions, i.e., sudden shifts from one dynamical regime to another. In the climate system, the atmospheric boundary layer can experience sudden transitions between fully turbulent states and quiescent, quasi-laminar states. Such rapid transitions are observed in polar regions or at night when the atmospheric boundary layer is stably stratified, and they have important consequences in the strength of mixing with the higher levels of the atmosphere. To analyze the stable boundary layer, many approaches rely on the identification of regimes that are commonly denoted as weakly and very stable regimes. Detecting transitions between the regimes is crucial for modeling purposes. In this work a combination of methods from dynamical systems and statistical modeling is applied to study these regime transitions and to develop an early warning signal that can be applied to nonstationary field data. The presented metric aims to detect nearing transitions by statistically quantifying the deviation from the dynamics expected when the system is close to a stable equilibrium. An idealized stochastic model of near-surface inversions is used to evaluate the potential of the metric as an indicator of regime transitions. In this stochastic system, small-scale perturbations can be amplified due to the nonlinearity, resulting in transitions between two possible equilibria of the temperature inversion. The simulations show such noise-induced regime transitions, successfully identified by the indicator. The indicator is further applied to time series data from nocturnal and polar meteorological measurements.


2015 ◽  
Vol 72 (8) ◽  
pp. 3178-3198 ◽  
Author(s):  
Adam H. Monahan ◽  
Tim Rees ◽  
Yanping He ◽  
Norman McFarlane

Abstract A long time series of temporally high-resolution wind and potential temperature data from the 213-m tower at Cabauw in the Netherlands demonstrates the existence of two distinct regimes of the stably stratified nocturnal boundary layer at this location. Hidden Markov model (HMM) analysis is used to objectively characterize these regimes and classify individual observed states. The first regime is characterized by strongly stable stratification, large wind speed differences between 10 and 200 m, and relatively weak turbulence. The second is associated with near-neutral stratification, weaker wind speed differences between 10 and 200 m, and relatively strong turbulence. In this second regime, the state of the boundary layer is similar to that during the day. The occupation statistics of these regimes are shown to covary with the large-scale pressure gradient force and cloud cover such that the first regime predominates under clear skies with weak geostrophic wind speed and the second regime predominates under conditions of extensive cloud cover or large geostrophic wind speed. These regimes are not distinguished by standard measures of stability, such as the Obukhov length or the bulk Richardson number. Evidence is presented that the mechanism generating these distinct regimes is associated with a previously documented feedback resulting from the existence of an upper limit on the maximum downward heat flux that can be sustained for a given near-surface wind speed.


Sign in / Sign up

Export Citation Format

Share Document