Isotopic abundances relevant to the identification of magma sources

The behaviour of natural radiogenic isotope tracers in the Earth that have lithophile and atmophile geochemical affinity is reviewed. The isotope tracer signature of oceanic and continental crust may in favourable circumstances be sufficiently distinct from that of the mantle to render a contribution from these sources resolvable within the isotopic composition of the magma. Components derived from the sedimentary and altered basaltic portion of oceanic crust are recognized in some island arc magmas from their Sr, Nd and Pb isotopic signatures. The rare-gas isotope tracers (He, Ar, Xe in particular) are not readily recycled into the mantle and thus provide the basis of an approach that is complementary to that based on the lithophile tracers. In particular, a small mantle-derived helium component may be readily recognized in the presence of a predominant radiogenic component generated in the continents. The importance of assessing the mass balance of these interactions rather than merely a qualitative recognition is emphasized. The question of the relative contribution of continental-oceanic crust and mantle to magma sources is an essential part of the problem of generation and evolution of continental crust. An approach to this problem through consideration of the isotopic composition of sediments is briefly discussed.

2020 ◽  
Author(s):  
Julien Cornet ◽  
Oscar Laurent ◽  
Jörn-Frederik Wotzlaw ◽  
Juan Otamendi ◽  
Olivier Bachmann

<p>The presence of a thick continental crust makes Earth a unique planet in the solar system. During post-Archaean times, with the onset of plate tectonics, processes by which continents form is a complex function of juvenile growth and recycling of pre-existing crust. Indeed, post-Archean mantle-derived magmas commonly intrude pre-existing, felsic continental crust. As a result, the origin of upper crustal granitoids, the most accessible products of planetary differentiation, is either accounted for by the melting of the pre-existing mid- to lower crust or the differentiation of mantle-derived mafic magmas. It is therefore critical to identify the relative contribution of these two different granite-forming processes in a given magmatic province, as well as how this relative contribution evolves over time, to assess crustal growth and/or recycling. To shed some light on this question, we used the combination of oxygen, hafnium and uranium-lead isotopic systems in zircons from granitoids of the Ordovician Famatinian Arc (Argentina) representing a typical crust-forming geotectonic setting. While the lower crustal section of Valle Fertíl, representing the basal level of the Famatinian crust, is already well studied, little is known on the timing and nature of igneous processes that built up the mid- and upper crust. </p><p>From our study, we observe a systematic co-variation of the O and Hf isotopic signatures of zircon in the mid- to upper crustal rocks, from a clearly crustal footprint (granodiorites with zircon δ<sup>18</sup>O of ca. +8 ‰; εHf<sub>t</sub> of ca. –3) to a mantle-like signature (granites and rhyolites: zircon δ<sup>18</sup>O of ca. +5 ‰; εHf<sub>t</sub> of ca. +5). Moreover, the high-precision (ID-TIMS) U-Pb dating obtained from the same zircons seem to record a progressive building of the Ordovician continental crust lasting for ca. 13Myrs from 483 to 470 Myrs ago. The results overlap with published ID-TIMS U-Pb data for the Famatinian lower crust, clustering at 470 Myrs, which confirms that the Famatinian Arc was a transcrustal magmatic system ultimately fed by mantle-derived magmas. In details, the oldest granitoids (483 Myrs) show the strongest crustal Hf-O isotopic fingerprint while the younger ones define a continuous range from this end-member towards the mantle signature. These results could be explained by (i) continuous ingrowth and “self-shielding” of lower crustal mafic intrusions progressively decreasing crustal melting or contamination of ascending mafic magma from a homogenous mantle source; (ii) progressive defertilization of an enriched lithospheric mantle or a strongly slab-enriched mantle wedge. The fact that the earliest (483 Myr-old) granitoids also show a more significant crustal contribution (ASI >1.1, inherited zircon cores) supports the first scenario. In this case, the combination of Hf-O isotopic studies as well as high precision U-Pb dating for the Famatinian arc comply with a progressive building of a magmatic column where a certain amount of time is needed for the system to mature and eventually reach mantle dominated processes in the formation of granites and so, new continental crust.</p>


2021 ◽  
Vol 292 ◽  
pp. 452-467
Author(s):  
Rachel Bezard ◽  
Simon Turner ◽  
Bruce Schaefer ◽  
Gene Yogodzinski ◽  
Kaj Hoernle

Author(s):  
Yujian Wang ◽  
Dicheng Zhu ◽  
Chengfa Lin ◽  
Fangyang Hu ◽  
Jingao Liu

Accretionary orogens function as major sites for the generation of continental crust, but the growth model of continental crust remains poorly constrained. The Central Asian Orogenic Belt, as one of the most important Phanerozoic accretionary orogens on Earth, has been the focus of debates regarding the proportion of juvenile crust present. Using published geochemical and zircon Hf-O isotopic data sets for three belts in the Eastern Tianshan terrane of the southern Central Asian Orogenic Belt, we first explore the variations in crustal thickness and isotopic composition in response to tectono-magmatic activity over time. Steady progression to radiogenic zircon Hf isotopic signatures associated with syn-collisional crustal thickening indicates enhanced input of mantle-derived material, which greatly contributes to the growth of the continental crust. Using the surface areas and relative increases in crustal thickness as the proxies for magma volumes, in conjunction with the calculated mantle fraction of the mixing flux, we then are able to determine that a volume of ∼14−22% of juvenile crust formed in the southern Central Asian Orogenic Belt during the Phanerozoic. This study highlights the validity of using crustal thickness and zircon isotopic signatures of magmatic rocks to quantify the volume of juvenile crust in complex accretionary orogens. With reference to the crustal growth pattern in other accretionary orogens and the Nd-Hf isotopic record at the global scale, our work reconciles the rapid crustal growth in the accretionary orogens with its episodic generation pattern in the formation of global continental crust.


2018 ◽  
Vol 15 (20) ◽  
pp. 6127-6138 ◽  
Author(s):  
Qixing Ji ◽  
Claudia Frey ◽  
Xin Sun ◽  
Melanie Jackson ◽  
Yea-Shine Lee ◽  
...  

Abstract. Nitrous oxide (N2O) is a greenhouse gas and an ozone depletion agent. Estuaries that are subject to seasonal anoxia are generally regarded as N2O sources. However, insufficient understanding of the environmental controls on N2O production results in large uncertainty about the estuarine contribution to the global N2O budget. Incubation experiments with nitrogen stable isotope tracer were used to investigate the geochemical factors controlling N2O production from denitrification in the Chesapeake Bay, the largest estuary in North America. The highest potential rates of water column N2O production via denitrification (7.5±1.2 nmol-N L−1 h−1) were detected during summer anoxia, during which oxidized nitrogen species (nitrate and nitrite) were absent from the water column. At the top of the anoxic layer, N2O production from denitrification was stimulated by addition of nitrate and nitrite. The relative contribution of nitrate and nitrite to N2O production was positively correlated with the ratio of nitrate to nitrite concentrations. Increased oxygen availability, up to 7 µmol L−1 oxygen, inhibited both N2O production and the reduction of nitrate to nitrite. In spring, high oxygen and low abundance of denitrifying microbes resulted in undetectable N2O production from denitrification. Thus, decreasing the nitrogen input into the Chesapeake Bay has two potential impacts on the N2O production: a lower availability of nitrogen substrates may mitigate short-term N2O emissions during summer anoxia; and, in the long-run (timescale of years), eutrophication will be alleviated and subsequent reoxygenation of the bay will further inhibit N2O production.


2012 ◽  
Vol 9 (12) ◽  
pp. 18799-18829
Author(s):  
S. Walter ◽  
A. Kock ◽  
T. Röckmann

Abstract. Oceans are a net source of molecular hydrogen (N2) to the atmosphere, where nitrogen (N2) fixation is assumed to be the main biological production pathway besides photochemical production from organic material. The sources can be distinguished using isotope measurements because of clearly differing isotopic signatures of the produced hydrogen. Here we present the first ship-borne measurements of atmospheric molecular H2 mixing ratio and isotopic composition at the West African coast of Mauritania (16–25° W, 17–24° N). This area is one of the biologically most active regions of the world's oceans with seasonal upwelling events and characterized by strongly differing hydrographical/biological properties and phytoplankton community structures. The aim of this study was to identify areas of H2 production and distinguish H2 sources by isotopic signatures of atmospheric H2. Besides this a diurnal cycle of atmospheric H2 was investigated. For this more than 100 air samples were taken during two cruises in February 2007 and 2008, respectively. During both cruises a transect from the Cape Verde Island towards the Mauritanian Coast was sampled. In 2007 additionally four days were sampled with a high resolution of one sample per hour. Our results clearly indicate the influence of local sources and suggest the Banc d'Arguin as a pool for precursors for photochemical H2 production, whereas N2 fixation could not be identified as a H2 source during these two cruises. With our experimental setup we could demonstrate that variability in diurnal cycles is probably influenced and biased by released precursors for photochemical H2 production and the origin of air masses. This means for further investigations that just measuring the mixing ratio of H2 is insufficient to explain the variability of a diurnal cycle and support is needed, e.g. by isotopic measurements. However, measurements of H2 mixing ratios, which are easy to conduct online during ship cruises could be a helpful tool to easily identify production areas of biological precursors such as VOC's for further investigations.


2018 ◽  
Vol 44 (2) ◽  
pp. 453 ◽  
Author(s):  
L. Holko ◽  
S. Bičárová ◽  
J. Hlavčo ◽  
M. Danko ◽  
Z. Kostka

Two-component isotopic hydrograph separation (IHS) was developed to determine the event- and pre-event components of a single storm event. Its application for several sucessive events requires repeated determination of isotopic signatures of end-members (precipitation, pre-event component) for each event. The existence of several possible alternative signatures results in differences in calculated contributions of event-/pre- event components. This article addresses the question of how big the differences could be in small mountain catchments with different methods for detemining the end member signatures. We analyzed data on isotopic composition of daily/event precipitation at different elevations in two catchments located in the highest part of the Carpathians in July 2014.The isotopic composition of streamflow sampled every 4-6 hours was analyzed as well. Elevational gradients of δ18O and δ2H in precipitation in the study period were -0.18 ‰ 100 m-1 and -1.1 ‰ 100 m-1, respectively. An elevation gradient in deuterium excess (0.29 ‰ 100 m-1) was also found. Precipitation on the windward side of the mountains was isotopically lighter than expected for a given rain gauge elevation. Five large rainfall-runoff events occurred in the study period in the meso-scale catchment of the Jalovecký creek (Western Tatra Mountains, area 22.2 km2) and in the headwater catchment of the Škaredý creek (High Tatra Mountains, area 1.4 km2). Isotopic hydrograph separation was conducted using eight options for the isotopic signatures of event and pre-event water. The isotopic signature of the event water (rainfall) was alternatively represented by data from high or low elevations. Pre-event water was represented either by the streamflow before the event or by the value taken from the statistics of the long-term data on isotopic composition of the stream. Both isotopes (18O and 2H) were used to calculate event water fractions during peak flows of individual events. Calculated peak flow event water fractions were below 0.2-0.3 for most events. However, the differences in calculated event water fractions for alternative isotopic composition of end-members were significant even if we did not take into account changes in isotopic composition during individual rainfalls. Coefficients of variation for event water fractions calculated for various options varied during individual events from 0.14 to 0.36. It is therefore perhaps better to use a range of possible values instead of a single accurate number to interpret the IHS results. Hydrograph separations based on 18O and 2H provided similar results.


2011 ◽  
Vol 11 (3) ◽  
pp. 10087-10120 ◽  
Author(s):  
A. M. Batenburg ◽  
S. Walter ◽  
G. Pieterse ◽  
I. Levin ◽  
M. Schmidt ◽  
...  

Abstract. Despite the potential of isotope measurements to improve our understanding of the global atmospheric molecular hydrogen (H2) cycle, few H2 isotope data have been published so far. Now, within the EUROpean network for atmospheric HYDRogen Observations and Studies project (EUROHYDROS), weekly to monthly air samples from six locations in a global sampling network have been analysed for hydrogen mixing ratio (m(H2)) and the stable hydrogen isotopic composition of H2 (δ(D,H2), hereafter referred to as δ(D)). The time series thus obtained now cover one to five years for all stations. This is the largest set of ground station observations of δ(D) so far. Annual average δ(D) values are higher at the Southern Hemisphere (SH) than at the Northern Hemisphere (NH) stations; the maximum is observed at Neumayer (Antarctica), and the minimum at the NH midlatitude or subtropical stations. The maximum seasonal differences in δ(D) range from ≈18‰ at Neumayer to ≈45‰ at Schauinsland (Southern Germany); in general, seasonal variability is largest at the NH stations. The timing of minima and maxima differs per station as well. In Alert (Arctic Canada), the variations in δ(D) and m(H2) can be approximated as simple harmonic functions with a ≈5-month phase shift. This out-of-phase seasonal behaviour of δ(D) and m(H2) can also be detected, but with a ≈6-month phase shift, at Mace Head and Cape Verde. However, no seasonal δ(D) cycle could be observed at Schauinsland, which likely reflects the larger influence of local sources and sinks at this continental station. At the two SH stations, no seasonal cycle could be detected in the δ(D) data. Assuming that the sink processes are the main drivers of the observed seasonality in m(H2) and δ(D) on the NH, the relative seasonal variations can be used to estimate the relative sink strength of the two major sinks, deposition to soils and atmospheric oxidation by the hydroxyl (OH) radical. For the NH coastal and marine stations this analysis shows that the relative contribution of soil uptake to the total sink processes increases with latitude.


2004 ◽  
Vol 68 (20) ◽  
pp. 4167-4178 ◽  
Author(s):  
F.-Z. Teng ◽  
W.F. McDonough ◽  
R.L. Rudnick ◽  
C. Dalpé ◽  
P.B. Tomascak ◽  
...  

1997 ◽  
Vol 48 (3) ◽  
pp. 370-380 ◽  
Author(s):  
Hervé Bocherens ◽  
Daniel Billiou ◽  
Marylène Patou-Mathis ◽  
Dominique Bonjean ◽  
Marcel Otte ◽  
...  

An isotopic investigation of upper Pleistocene mammal bones and teeth from Scladina cave (Sclayn, Belgium) demonstrated the very good quality of collagen preservation. A preliminary screening of the samples used the amount of nitrogen in whole bone and dentine in order to estimate the preserved amount of collagen before starting the extraction process. The isotopic abundances of fossil specimens from still-extant species are consistent with their trophic position. Moreover, the15N isotopic abundance is higher in dentine than in bone in bears and hyenas, a phenomenon already observed in modern specimens. These results demonstrate that the isotopic compositions of samples from Scladina cave can be interpreted in ecological terms. Mammoths exhibit a high15N isotopic abundance relative to other herbivores, as was the case in Siberian and Alaskan samples. These results suggest distinctive dietary adaptations in herbivores living in the mammoth steppe. Cave bears are clearly isotopically different from coeval brown bears, suggesting an ecological separation between species, with a pure vegetarian diet for cave bear and an omnivorous diet for brown bear.


Sign in / Sign up

Export Citation Format

Share Document