scholarly journals Dynamics of the lithosphere and the intraplate stress field

We outline the methodology of our numerical studies aimed at increasing the understanding of the relation between dynamics and stress field of the lithosphere with particular reference to oceanic lithosphere. The ridge-push force is modelled as a pressure gradient integrated over all contributing parts of the lithosphere. The slab-pull force is modelled as being dependent on the age of the subducting lithosphere. We parametrize the resistive forces and determine the unknown parameters by requiring the total torque of all forces acting on the plate to vanish. We illustrate the approach by the presentation and discussion of new modelling results for the Pacific plate.

1976 ◽  
Vol 13 (3) ◽  
pp. 212-217 ◽  
Author(s):  
Han-Shou Liu ◽  
Edward S. Chang ◽  
George H. Wyatt

2021 ◽  
Vol 49 (4) ◽  
pp. 102-127
Author(s):  
E. G. Mirlin ◽  
T. I. Lygina ◽  
E. I. Chesalova

The analysis of altimetric data in combination with bathymetry and gravimetry materials in the north-eastern and southern sectors of the Pacific Ocean, as well as detailed data on the underwater relief, the structure of the sedimentary cover, the composition and absolute age of basalts obtained within the area of domestic geological exploration for ferromanganese nodules (the Clarion-Clipperton zone) is carried out. Structural trends formed by local cone-shaped local structures of presumably volcanic nature, grouped along transform faults belonging to various stages of the kinematics of the Pacific Plate, have been traced in the structure of the oceanic lithosphere at various scale levels. The first trend corresponds to the extension of the fault system corresponding to the spreading system on the crest of the East Pacific rise before the restructuring of its planned geometry in the Paleocene-Eocene, the second coincides with their extension after the change in the relative movement of the Pacific Plate. The trends are characterized by planned disagreement, and an increase in the number of seamounts is observed in the areas of their intersection. Within the area of detailed studies, obvious signs of volcanic-tectonic activity were revealed: high dissection of the underwater relief, hills of different heights with steep slopes, whose volcanic nature is confirmed by differentiated basalts raised from their slopes, the absolute age of which indicates the multistage outpourings that occurred in an intraplate environment. The angular velocity of rotation of the spreading axis and the linear velocity of its advance with changes in the kinematics of the Pacific plate are estimated and possible reasons for changes in its relative motion are considered. An improved scheme of adaptation of the spreading zone to a change in the direction of relative plate movement is proposed, acc0ording to which an essential factor of intraplate volcanic-tectonic activity is the relaxation of stresses in the plate caused by external influence on it.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 726
Author(s):  
Lamya A. Baharith ◽  
Wedad H. Aljuhani

This article presents a new method for generating distributions. This method combines two techniques—the transformed—transformer and alpha power transformation approaches—allowing for tremendous flexibility in the resulting distributions. The new approach is applied to introduce the alpha power Weibull—exponential distribution. The density of this distribution can take asymmetric and near-symmetric shapes. Various asymmetric shapes, such as decreasing, increasing, L-shaped, near-symmetrical, and right-skewed shapes, are observed for the related failure rate function, making it more tractable for many modeling applications. Some significant mathematical features of the suggested distribution are determined. Estimates of the unknown parameters of the proposed distribution are obtained using the maximum likelihood method. Furthermore, some numerical studies were carried out, in order to evaluate the estimation performance. Three practical datasets are considered to analyze the usefulness and flexibility of the introduced distribution. The proposed alpha power Weibull–exponential distribution can outperform other well-known distributions, showing its great adaptability in the context of real data analysis.


1988 ◽  
Vol 15 (13) ◽  
pp. 1483-1486 ◽  
Author(s):  
J. C. Lahr ◽  
R. A. Page ◽  
C. D. Stephens ◽  
D. H. Christensen

2016 ◽  
Vol 2 (7) ◽  
pp. e1600022 ◽  
Author(s):  
Lydian M. Boschman ◽  
Douwe J. J. van Hinsbergen

The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate’s birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of “Thalassa Incognita” that comprises the comprehensive Panthalassa Ocean surrounding Pangea.


2021 ◽  
Author(s):  
Anna Jegen ◽  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Udo Barckhausen ◽  
Ingo Heyde ◽  
...  

<p>The Lau Basin is a young back-arc basin steadily forming at the Indo-Australian-Pacific plate boundary, where the Pacific plate is subducting underneath the Australian plate along the Tonga-Kermadec island arc. Roughly 25 Ma ago, roll-back of the Kermadec-Tonga subduction zone commenced, which lead to break up of the overriding plate and thus the formation of the western Lau Ridge and the eastern Tonga Ridge separated by the emerging Lau Basin.</p><p>As an analogue to the asymmetric roll back of the Pacific plate, the divergence rates decline southwards hence dictating an asymmetric, V-shaped basin opening. Further, the decentralisation of the extensional motion over 11 distinct spreading centres and zones of active rifting has led to the formation of a composite crust formed of a microplate mosaic. A simplified three plate model of the Lau Basin comprises the Tonga plate, the Australian plate and the Niuafo'ou microplate. The northeastern boundary of the Niuafo'ou microplate is given by two overlapping spreading centres (OLSC), the southern tip of the eastern axis of the Mangatolu Triple Junction (MTJ-S) and the northern tip of the Fonualei Rift spreading centre (FRSC) on the eastern side. Slow to ultraslow divergence rates were identified along the FRSC (8-32 mm/a) and slow divergence at the MTJ (27-32 mm/a), both decreasing southwards. However, the manner of divergence has not yet been identified. Additional regional geophysical data are necessary to overcome this gap of knowledge.</p><p>Research vessel RV Sonne (cruise SO267) set out to conduct seismic refraction and wide-angle reflection data along a 185 km long transect crossing the Lau Basin at ~16 °S from the Tonga arc in the east, the overlapping spreading centres, FRSC1 and MTJ-S2, and extending as far as a volcanic ridge in the west. The refraction seismic profile consisted of 30 ocean bottom seismometers. Additionally, 2D MCS reflection seismic data as well as magnetic and gravimetric data were acquired.</p><p>The results of our P-wave traveltime tomography show a crust that varies between 4.5-6 km in thickness. Underneath the OLSC the upper crust is 2-2.5 km thick and the lower crust 2-2.5 km thick. The velocity gradients of the upper and lower crust differ significantly from tomographic models of magmatically dominated oceanic ridges. Compared to such magmatically dominated ridges, our final P-wave velocity model displays a decreased velocity gradient in the upper crust and an increased velocity gradient in the lower crust more comparable to tectonically dominated rifts with a sparse magmatic budget.</p><p>The dominance of crustal stretching in the regional rifting process leads to a tectonical stretching, thus thinning of the crust under the OLSC and therefore increasing the lower crust’s velocity gradient. Due to the limited magmatic budget of the area, neither the magnetic anomaly nor the gravity data indicate a magmatically dominated spreading centre. We conclude that extension in the Lau Basin at the OLSC at 16 °S is dominated by extensional processes with little magmatism, which is supported by the distribution of seismic events concentrated at the northern tip of the FRSC.</p>


Author(s):  
Abd El-Maseh, M. P

<p>In this paper, the Bayesian estimation for the unknown parameters for the bivariate generalized exponential (BVGE) distribution under Bivariate censoring type-I samples with constant stress accelerated life testing (CSALT) are discussed. The scale parameter of the lifetime distribution at constant stress levels is assumed to be an inverse power law function of the stress level. The parameters are estimated by Bayesian approach using Markov Chain Monte Carlo (MCMC) method based on Gibbs sampling. Then, the numerical studies are introduced to illustrate the approach study using samples which have been generated from the BVGE distribution.</p>


2014 ◽  
Vol 15 (4) ◽  
pp. 1363-1373 ◽  
Author(s):  
Koichiro Obana ◽  
Tsutomu Takahashi ◽  
Tetsuo No ◽  
Yuka Kaiho ◽  
Shuichi Kodaira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document