Regularization of the Kelvin–Helmholtz instability by surface tension

Author(s):  
David M Ambrose

The Kelvin–Helmholtz instability is present in the motion of a vortex sheet without surface tension. This can be seen from the linearization of the equations of motion, and there have also been proofs of ill-posedness for the full nonlinear equations. In the presence of surface tension, the linearized equations no longer exhibit an instability, and it has been believed that the full equations should then be well-posed. In this paper, I sketch a proof that the vortex sheet with surface tension is well-posed in the case of both two- and three-dimensional fluids. The proof in the case of three-dimensional fluids is the joint work with Nader Masmoudi. The method is to first reformulate the problem using suitable variables and parametrizations, and then to perform energy estimates. The choice of variables and parametrizations in the two-dimensional case is the same as that of Hou et al . in a prior numerical work.

2007 ◽  
Vol 593 ◽  
pp. 181-208 ◽  
Author(s):  
I. M. GRIFFITHS ◽  
P. D. HOWELL

We consider the evolution of an annular two-dimensional region occupied by viscous fluid driven by surface tension and applied pressure at the free surfaces. We assume that the thickness of the domain is small compared with its circumference, so that it may be described as a thin viscous sheet whose ends are joined to form a closed loop. Analytical and numerical solutions of the resulting model are obtained and we show that it is well posed whether run forwards or backwards in time. This enables us to determine, in many cases explicitly, which initial shapes will evolve into a desired final shape. We also show how the application of an internal pressure may be used to control the evolution.This work is motivated by the production of non-axisymmetric capillary tubing via the Vello process. Molten glass is fed through a die and drawn off vertically, while the shape of the cross-section evolves under surface tension and any applied pressure as it flows downstream. Here the goal is to determine the die shape required to achieve a given desired final shape, typically square or rectangular. We conclude by discussing the role of our two-dimensional model in describing the three-dimensional tube-drawing process.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Niklas Ericsson

Abstract We develop a framework for solving the stationary, incompressible Stokes equations in an axisymmetric domain. By means of Fourier expansion with respect to the angular variable, the three-dimensional Stokes problem is reduced to an equivalent, countable family of decoupled two-dimensional problems. By using decomposition of three-dimensional Sobolev norms, we derive natural variational spaces for the two-dimensional problems, and show that the variational formulations are well-posed. We analyze the error due to Fourier truncation and conclude that, for data that are sufficiently regular, it suffices to solve a small number of two-dimensional problems.


Geophysics ◽  
1966 ◽  
Vol 31 (1) ◽  
pp. 153-166 ◽  
Author(s):  
M. A. Biot

The theory of three‐dimensional gravity instability of multilayers is developed with particular application to salt structures. It is shown that three‐dimensional solutions are immediately obtained without further numerical work from the solution of the corresponding two‐dimensional problem. Application to a number of typical three‐dimensional structures yields the characteristic distance between peaks and crests and shows that this distance does not differ significantly from the wavelength of the two‐dimensional solution. Various periodic patterns are examined corresponding to rectangular and hexagonal cells. The time history of nonperiodic structures corresponding to initial deviations from perfect horizontality is also derived. The method is applied to the three‐dimensional problem of generation of salt structures when the time‐history of sedimentation is taken into account with variable thickness and compaction of the overburden and establishes the general validity of the geological conclusions derived from the previous two‐dimensional treatment of the same problem (Biot and Odé, 1965). The present method of deriving three‐dimensional solutions, which is developed here in the special context of gravity instability, is valid for a wide variety of problems in theoretical physics.


Author(s):  
David M. Ambrose ◽  
Michael Siegel

A well-posedness theory for the initial-value problem for hydroelastic waves in two spatial dimensions is presented. This problem, which arises in numerous applications, describes the evolution of a thin elastic membrane in a two-dimensional (2D) potential flow. We use a model for the elastic sheet that accounts for bending stresses and membrane tension, but which neglects the mass of the membrane. The analysis is based on a vortex sheet formulation and, following earlier analyses and numerical computations in 2D interfacial flow with surface tension, we use an angle–arclength representation of the problem. We prove short-time well-posedness in Sobolev spaces. The proof is based on energy estimates, and the main challenge is to find a definition of the energy and estimates on high-order non-local terms so that an a priori bound can be obtained.


2020 ◽  
Author(s):  
Alexander Dosaev ◽  
Yuliya Troitskaya

<p>Many features of nonlinear water wave dynamics can be explained within the assumption that the motion of fluid is strictly potential. At the same time, numerically solving exact equations of motion for a three-dimensional potential flow with a free surface (by means of, for example, boundary integral method) is still often considered too computationally expensive, and further simplifications are made, usually implying limitations on wave steepness. A quasi-three-dimensional model, put forward by V. P. Ruban [1], represents another approach at reducing computational cost. It is, in its essence, a two-dimensional model, formulated using conformal mapping of the flow domain, augmented by three-dimensional corrections. The model assumes narrow directional distribution of the wave field and is exact for two-dimensional waves. It was successfully applied by its author to study a nonlinear stage of of Benjamin-Feir instability and rogue waves formation.</p><p>The main aim of the present work is to explore the behaviour of the quasi-three-dimensional model outside the formal limits of its applicability. From the practical point of view, it is important that the model operates robustly even in the presence of waves propagating at large angles to the main direction (although we do not attempt to accurately describe their dynamics). We investigate linear stability of Stokes waves to three-dimensional perturbations and suggest a modification to the original model to eliminate a spurious zone of instability in the vicinity of the perpendicular direction on the perturbation wavenumber plane. We show that the quasi-three-dimensional model yields a qualitatively correct description of the instability zone generated by resonant 5-wave interactions. The values of the increment are reasonably close to those obtained from the exact equations of motion [2], despite the fact that the corresponding modes of instability consist of harmonics that are relatively far from the main direction. Resonant 5-wave interactions are known to manifest themselves in the formation of the so-called “horse-shoe” or “crescent-shaped” wave patterns, and the quasi-three-dimensional model exhibits a plausible dynamics leading to formation of crescent-shaped waves.</p><p>This research was supported by RFBR (grant No. 20-05-00322).</p><p>[1] Ruban, V. P. (2010). Conformal variables in the numerical simulations of long-crested rogue waves. <em>The European Physical Journal Special Topics</em>, <em>185</em>(1), 17-33.</p><p>[2] McLean, J. W. (1982). Instabilities of finite-amplitude water waves. <em>Journal of Fluid Mechanics</em>, <em>114</em>, 315-330.</p>


1960 ◽  
Vol 64 (596) ◽  
pp. 482-488 ◽  
Author(s):  
D. Best

A polar-controlled missile is one in which manoeuvre is carried out by rotations about roll and pitch axes, that is, in the manner of a conventional aeroplane. This paper discusses some problems in the application of this form of control to homing missiles.In comparison with the alternative Cartesian configuration, this method presents some special design problems. In the former case, it is often possible to resolve the motion into two planes and consider the pitch and yaw control systems as independent two-dimensional problems. This simplification is not possible in the case of polar control and it is usually necessary to consider the whole three-dimensional system. The equations of motion which result are, in general, not susceptible to analysis. Because of this, the design of control systems requires extensive use of simulators.


Some years ago it was pointed out by Prof. Proudman that all slow steady motions of a rotating liquid must be two-dimensional. If the motion is produced by moving a cylindrical object slowly through the liquid in such a way that its axis remains parallel to the axis of rotation, or if a two-dimensional motion is conceived as already existing, it seems clear that it will remain two-dimensional. If a slow three-dimensional motion is produced, then it cannot be a steady one. On the other hand, if an attempt is made to produce a slow steady motion by moving a three-dimensional body with a small uniform velocity (relative to axes which rotate with the fluid) three possibilities present themselves:— ( a ) The motion in the liquid may never become steady, however long the body goes on moving. ( b ) The motion may be steady but it may not be small in the neighbourhood of the body. ( c ) The motion may be steady and two-dimensional. In considering these three possibilities it seems very unlikely that ( a ) will be the true one. In an infinite rotating fluid the disturbance produced by starting the motion of the body might go on spreading out for ever and steady motion might never be attained, but if the body were moved steadily in a direction at right angles to the axis of rotation, and if the fluid were contained between parallel planes also perpendicular to the axis of rotation, it seems very improbable that no steady motion satisfying the equations of motion could be attained. There is more chance that ( b ) may be true. A class of mathematical expressions representing the steady motion of a sphere along the axis of a rotating liquid has been obtained. This solution of the problem breaks down when the velocity of the sphere becomes indefinitely small, in the sense that it represents a motion which does not decrease as the velocity of the sphere decreases. It seems unlikely that such a motion would be produced under experimental conditions.


2007 ◽  
Vol 579 ◽  
pp. 383-412 ◽  
Author(s):  
ANDRÉ THESS ◽  
OLEG ZIKANOV

We report a theoretical investigation of the robustness of two-dimensional inviscid magnetohydrodynamic (MHD) flows at low magnetic Reynolds numbers with respect to three-dimensional perturbations. We use a combination of linear stability analysis and direct numerical simulations to analyse three problems, namely the flow in the interior of a triaxial ellipsoid, and two unbounded flows: a vortex with elliptical streamlines and a vortex sheet parallel to the magnetic field. The flow in a triaxial ellipsoid is found to present an exact analytical model which demonstrates both the existence of inviscid unstable three-dimensional modes and the stabilizing role of the magnetic field. The nonlinear evolution of the flow is characterized by intermittency typical of other MHD flows with long periods of nearly two-dimensional behaviour interrupted by violent three-dimensional transients triggered by the instability. We demonstrate, using the second model, that motion with elliptical streamlines perpendicular to the magnetic field becomes unstable with respect to the elliptical instability once the magnetic interaction parameter falls below a critical magnitude whose value tends to infinity as the eccentricity of the streamlines increases. Furthermore, the third model indicates that vortex sheets parallel to the magnetic field, which are unstable for any velocity and any magnetic field, emit eddies with vorticity perpendicular to the magnetic field. Whether the investigated instabilities persist in the presence of small but finite viscosity, in which case two-dimensional turbulence would represent a singular state of MHD flows, remains an open question.


2019 ◽  
Vol 7 (3) ◽  
pp. 5-12
Author(s):  
Viktor Kochanenko ◽  
Dmitry Kelekhsaev ◽  
Anatolij Kondratenko ◽  
Sergey Evtushenko

The paper studies a two-dimensional water flow that flows from a non-pressure rectangular or round pipe into a wide horizontal channel. To simplify the problem, the real three-dimensional flow is modeled as a two-dimensional zone by eliminating the velocities and accelerations of liquid particles in the direction perpendicular to the flow zone. To describe the law of motion of the water flow, the equations of L. Euler for the ideal fluid are used, taking into account the continuity equations and the Bernoulli equation. Models of two-dimensional flow in the spreading zone with the degree of adequacy sufficient for practice describe the movement of water flows arising in the lower races of road drainage systems, systems of Liman irrigation, small bridges, channels of volley of water, various culverts and water-crossing facilities. The obtained dependences of the velocity distribution, depth and water flow geometry give an accuracy exceeding that known by the previously used methods both by the velocity values and by the geometry of the boundary current lines.


Author(s):  
Andrzej J. Maciejewski ◽  
Maria Przybylska

In this paper, we investigate systems of several point masses moving in constant curvature two-dimensional manifolds and subjected to certain holonomic constraints. We show that in certain cases these systems can be considered as rigid bodies in Euclidean and pseudo-Euclidean three-dimensional spaces with points which can move along a curve fixed in the body. We derive the equations of motion which are Hamiltonian with respect to a certain degenerated Poisson bracket. Moreover, we have found several integrable cases of described models. For one of them, we give the necessary and sufficient conditions for the integrability. This article is part of the theme issue ‘Finite dimensional integrable systems: new trends and methods’.


Sign in / Sign up

Export Citation Format

Share Document