scholarly journals Climate predictions: the influence of nonlinearity and randomness

Author(s):  
J. Michael T. Thompson ◽  
Jan Sieber

The current threat of global warming and the public demand for confident projections of climate change pose the ultimate challenge to science: predicting the future behaviour of a system of such overwhelming complexity as the Earth's climate. This Theme Issue addresses two practical problems that make even prediction of the statistical properties of the climate, when treated as the attractor of a chaotic system (the weather), so challenging. The first is that even for the most detailed models, these statistical properties of the attractor show systematic biases. The second is that the attractor may undergo sudden large-scale changes on a time scale that is fast compared with the gradual change of the forcing (the so-called climate tipping).

Author(s):  
C R McInnes

The prospect of engineering the Earth's climate (geoengineering) raises a multitude of issues associated with climatology, engineering on macroscopic scales, and indeed the ethics of such ventures. Depending on personal views, such large-scale engineering is either an obvious necessity for the deep future, or yet another example of human conceit. In this article a simple climate model will be used to estimate requirements for engineering the Earth's climate, principally using space-based geoengineering. Active cooling of the climate to mitigate anthropogenic climate change due to a doubling of the carbon dioxide concentration in the Earth's atmosphere is considered. This representative scenario will allow the scale of the engineering challenge to be determined. It will be argued that simple occulting discs at the interior Lagrange point may represent a less complex solution than concepts for highly engineered refracting discs proposed recently. While engineering on macroscopic scales can appear formidable, emerging capabilities may allow such ventures to be seriously considered in the long term. This article is not an exhaustive review of geoengineering, but aims to provide a foretaste of the future opportunities, challenges, and requirements for space-based geoengineering ventures.


2013 ◽  
Vol 42 (1) ◽  
pp. 71-98 ◽  
Author(s):  
Axel Berger ◽  
Doris Fischer ◽  
Rasmus Lema ◽  
Hubert Schmitz ◽  
Frauke Urban

Despite the large-scale investments of both China and the EU in climate-change mitigation and renewable-energy promotion, the prevailing view on China–EU relations is one of conflict rather than cooperation. In order to evaluate the prospects of cooperation between China and the EU in these policy fields, empirical research has to go beyond simplistic narratives. This paper suggests a conceptual apparatus that will help researchers better understand the complexities of the real world. The relevant actors operate at different levels and in the public and private sectors. The main message of the paper is that combining the multilevel governance and value-chain approaches helps clarify the multiple relationships between these actors.


2017 ◽  
Vol 98 (2) ◽  
pp. 219-223 ◽  
Author(s):  
Neil Stenhouse ◽  
Allison Harper ◽  
Xiaomei Cai ◽  
Sara Cobb ◽  
Anne Nicotera ◽  
...  

Abstract This article analyzes open-ended survey responses to understand how members of the American Meteorological Society (AMS) perceive conflict within the AMS over global warming. Of all survey respondents, 53% agreed that there was conflict within the AMS; of these individuals who perceived conflict, 62% saw it as having at least some productive aspects, and 53% saw at least some unproductive aspects. Among members who saw a productive side to the conflict, most agreed as to why it was productive: debate and diverse perspectives enhance science. However, among members who saw an unproductive side, there was considerable disagreement as to why. Members who are convinced of largely human-caused climate change expressed that debate over global warming sends an unclear message to the public. Conversely, members who are unconvinced of human-caused climate change often felt that their peers were closed-minded and suppressing unpopular views. These two groups converged, however, on one point: politics was seen as an overwhelmingly negative influence on the debate. This suggests that scientific organizations faced with similar conflict should understand that there may be a contradiction between legitimizing all members’ views and sending a clear message to the public about the weight of the evidence. The findings also reinforce the conclusion that attempts by scientific societies to directly address differences in political views may be met with strong resistance by many scientists.


Author(s):  
James Hansen ◽  
Makiko Sato ◽  
Pushker Kharecha ◽  
Gary Russell ◽  
David W Lea ◽  
...  

Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the ‘albedo flip’ property of ice/water, provides a powerful trigger mechanism. A climate forcing that ‘flips’ the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO 2 ) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO 2 emissions and reduce non-CO 2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO 2 forcings is methane (CH 4 ), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O 3 ), which is the third largest GHG forcing. Nitrous oxide (N 2 O) should also be a focus of climate mitigation efforts. Black carbon (‘black soot’) has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment.


Author(s):  
W. Neil Adger ◽  
Iain Brown ◽  
Swenja Surminski

Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’.


2018 ◽  
Vol 4 (3) ◽  
pp. 13
Author(s):  
Jan-Erik Lane

Climate and earth scientists now predicting abrupt climate change never ask the social sciences whether large scale policy-making and international coordination, like the COP21 project, is all feasible. The message from policy analysis is that rational decision-making is a myth, as there is bound to be mistakes, confusion and opportunism in policy implementation. Is it better for each state to develop its own climate policy – the resilience option? However, when looking at energy planning by core states, one finds little of decarbonisation. Only Uruguay has good preparation for global warming. Abrupt climate change threatens numerous tipping points towards Hawking irreversibility. But the social sciences are skeptical about large scale policy implementation based upon comprehensively rational decision-making.


Author(s):  
MATTHEW KOPEC ◽  
JUSTIN BRUNER

Abstract Discussions of the nonidentity problem presuppose a widely shared intuition that actions or policies that change who comes into existence do not, thereby, become morally unproblematic. We hypothesize that this intuition is not generally shared by the public, which could have widespread implications concerning how to generate support for large-scale, identity-affecting policies relating to matters like climate change. To test this, we ran a version of the well-known dictator game designed to mimic the public's behavior over identity-affecting choices. We found the public does seem to behave more selfishly when making identity-affecting choices, which should be concerning. We further hypothesized that one possible mechanism is the notion of harm the public uses in their decision making and find that substantial portions of the population seem to each employ distinct notions of harm in their normative thinking. These findings raise puzzling features about the public's normative thinking that call out for further empirical examination.


Author(s):  
Neil T. Gavin

Television and cable are two routes by which broadcasters reach the public. Citizens are known to rely on a variety of media sources; however, television is seen by people in a very wide range of geographical locales, as a main or major source of reliable and trusted information. The coverage of climate change by broadcasters is, however, modest relative to press coverage of the topic and reports on topics other than global warming. Journalists in the televisual media can struggle to justify the inclusion of climate change in programming because it can lack the “newsworthiness” that draws editors and reporters to other issues. A range of incentives and pressures have tended to ensure that commentary and claims that stand outside the scientific consensus are represented in “balanced” reporting. The literature on broadcast programming output on climate change is highly diverse and often country specific. Nevertheless, certain features do stand out across locales, notably a focus on alarming (and possibly alarmist) commentary, limited reporting on the causes and consequences of climate change, and widespread reproduction of climate sceptic claims. These common forms of coverage seem unlikely to prompt full understanding of, serious engagement with, or concern about the issue.


2021 ◽  
Author(s):  
Antonio Sánchez Benítez ◽  
Thomas Jung ◽  
Helge Goessling ◽  
Felix Pithan ◽  
Tido Semmler

<p>Under the current global warming trend, heatwaves are becoming more intense, frequent, and longer-lasting; and this trend will continue in the future. In this context, the recent 2019 summer was exceptionally hot in large areas of the Northern Hemisphere, with embedded heatwaves, as for example the June and July 2019 European events, redrawing the temperature record map in western Europe. Large-scale dynamics (associated with blockings or subtropical ridges) play a key role in explaining these-large scale events.</p><p>Conceptually, global warming can be split into two different contributions: Dynamic and thermodynamic changes. Whereas dynamic changes remain highly uncertain, some thermodynamic changes can be quantified with higher confidence. We exploit this concept by studying how these recent European heatwaves would have developed in a pre-industrial climate and how it would develop in the future for 1.5, 2 and 4 ºC warmer climates (storyline scenarios). To do so, we employ the spectral nudging technique with AWI-CM (CMIP6 model, a combination of ECHAM6 AGCM + FESOM Sea Ice-Ocean Model). Large-scale dynamics are prescribed by reanalysis data (ERA5). Meanwhile, the model is run for different boundary conditions corresponding to preindustrial and future climates along the SSP370 forcing scenario. This approach can be useful to help understand and communicate what climate change will mean to people’s life and hence facilitate effective decision-making regarding adaptation to climate change, as we are quantifying how recent outstanding events would be modified by our climate action. </p><p>Temperatures during the heatwaves often increase twice as much as global mean temperatures, especially in a future 4 ºC warmer climate. In this future climate, maximum temperatures can locally reach 50ºC in many western Europe countries. Nighttime temperatures would be similar to the daytime temperatures in a preindustrial world. The global warming amplification can be partly explained by a robust soil drying in the future 4 ºC warmer climate (exacerbated due to the June 2019 heatwave) which is transmitted to a robust increase in Bowen ratio. Importantly, by design of our study, this response occurs without any changes in atmospheric circulation.</p>


Sign in / Sign up

Export Citation Format

Share Document