scholarly journals The Southern Ocean in the Coupled Model Intercomparison Project phase 5

Author(s):  
A. J. S. Meijers

The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear.

2016 ◽  
Author(s):  
Stephen M. Griffies ◽  
Gokhan Danabasoglu ◽  
Paul J. Durack ◽  
Alistair J. Adcroft ◽  
V. Balaji ◽  
...  

Abstract. The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses these aims in two complementary manners: (A) by providing an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing, (B) by providing a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) offering details for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows that of the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II have become the standard method to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP (Scenario MIP), as well as the ocean-sea ice OMIP simulations. The bulk of this paper offers scientific rationale for saving these diagnostics.


2014 ◽  
Vol 27 (6) ◽  
pp. 2444-2456 ◽  
Author(s):  
Dennis L. Hartmann ◽  
Paulo Ceppi

Abstract The Clouds and the Earth’s Radiant Energy System (CERES) observations of global top-of-atmosphere radiative energy fluxes for the period March 2000–February 2013 are examined for robust trends and variability. The trend in Arctic ice is clearly evident in the time series of reflected shortwave radiation, which closely follows the record of ice extent. The data indicate that, for every 106 km2 decrease in September sea ice extent, annual-mean absorbed solar radiation averaged over 75°–90°N increases by 2.5 W m−2, or about 6 W m−2 between 2000 and 2012. CMIP5 models generally show a much smaller change in sea ice extent over the 1970–2012 period, but the relationship of sea ice extent to reflected shortwave is in good agreement with recent observations. Another robust trend during this period is an increase in reflected shortwave radiation in the zonal belt from 45° to 65°S. This trend is mostly related to increases in sea ice concentrations in the Southern Ocean and less directly related to cloudiness trends associated with the annular variability of the Southern Hemisphere. Models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) produce a scaling of cloud reflection to zonal wind increase that is similar to trend observations in regions separated from the direct effects of sea ice. Atmospheric Model Intercomparison Project (AMIP) model responses over the Southern Ocean are not consistent with each other or with the observed shortwave trends in regions removed from the direct effect of sea ice.


2013 ◽  
Vol 26 (5) ◽  
pp. 1473-1484 ◽  
Author(s):  
John Turner ◽  
Thomas J. Bracegirdle ◽  
Tony Phillips ◽  
Gareth J. Marshall ◽  
J. Scott Hosking

Abstract This paper examines the annual cycle and trends in Antarctic sea ice extent (SIE) for 18 models used in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that were run with historical forcing for the 1850s to 2005. Many of the models have an annual SIE cycle that differs markedly from that observed over the last 30 years. The majority of models have too small of an SIE at the minimum in February, while several of the models have less than two-thirds of the observed SIE at the September maximum. In contrast to the satellite data, which exhibit a slight increase in SIE, the mean SIE of the models over 1979–2005 shows a decrease in each month, with the greatest multimodel mean percentage monthly decline of 13.6% decade−1 in February and the greatest absolute loss of ice of −0.40 × 106 km2 decade−1 in September. The models have very large differences in SIE over 1860–2005. Most of the control runs have statistically significant trends in SIE over their full time span, and all of the models have a negative trend in SIE since the mid-nineteenth century. The negative SIE trends in most of the model runs over 1979–2005 are a continuation of an earlier decline, suggesting that the processes responsible for the observed increase over the last 30 years are not being simulated correctly.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Alex Crawford ◽  
Julienne Stroeve ◽  
Abigail Smith ◽  
Alexandra Jahn

AbstractThe shrinking of Arctic-wide September sea ice extent is often cited as an indicator of modern climate change; however, the timing of seasonal sea ice retreat/advance and the length of the open-water period are often more relevant to stakeholders working at regional and local scales. Here we highlight changes in regional open-water periods at multiple warming thresholds. We show that, in the latest generation of models from the Coupled Model Intercomparison Project (CMIP6), the open-water period lengthens by 63 days on average with 2 °C of global warming above the 1850-1900 average, and by over 90 days in several Arctic seas. Nearly the entire Arctic, including the Transpolar Sea Route, has at least 3 months of open water per year with 3.5 °C warming, and at least 6 months with 5 °C warming. Model bias compared to satellite data suggests that even such dramatic projections may be conservative.


2017 ◽  
Vol 10 (2) ◽  
pp. 585-607 ◽  
Author(s):  
William J. Collins ◽  
Jean-François Lamarque ◽  
Michael Schulz ◽  
Olivier Boucher ◽  
Veronika Eyring ◽  
...  

Abstract. The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and their climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. Specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.


2020 ◽  
Author(s):  
Hakase Hayashida ◽  
Meibing Jin ◽  
Nadja S. Steiner ◽  
Neil C. Swart ◽  
Eiji Watanabe ◽  
...  

Abstract. Ice algae play a fundamental role in shaping polar marine ecosystems and biogeochemistry. This role can be investigated by field observations, however the influence of ice algae at the regional and global scales remains unclear due to limited spatial and temporal coverage of observations, and because ice algae are typically not included in current Earth System Models. To address this knowledge gap, we introduce a new model intercomparison project (MIP), referred to here as the Ice Algae Model Intercomparison Project phase 2 (IAMIP2). IAMIP2 is built upon the experience from its previous phase, and expands its scope to global coverage (both Arctic and Antarctic) and centennial timescales (spanning the mid-twentieth century to the end of the twenty-first century). Participating models are three-dimensional regional and global coupled sea ice–ocean models that incorporate sea-ice ecosystem components. These models are driven by the same initial conditions and atmospheric forcing datasets by incorporating and expanding the protocols of the Ocean Model Intercomparison Project, an endorsed MIP of the Coupled Model Intercomparison Project phase 6 (CMIP6). Doing so provides more robust estimates of model bias and uncertainty, and consequently advances the science of polar marine ecosystems and biogeochemistry. A diagnostic protocol is designed to enhance the reusability of the model data products of IAMIP2. Lastly, the limitations and strengths of IAMIP2 are discussed in the context of prospective research outcomes.


2020 ◽  
Vol 33 (15) ◽  
pp. 6555-6581 ◽  
Author(s):  
R. L. Beadling ◽  
J. L. Russell ◽  
R. J. Stouffer ◽  
M. Mazloff ◽  
L. D. Talley ◽  
...  

AbstractThe air–sea exchange of heat and carbon in the Southern Ocean (SO) plays an important role in mediating the climate state. The dominant role the SO plays in storing anthropogenic heat and carbon is a direct consequence of the unique and complex ocean circulation that exists there. Previous generations of climate models have struggled to accurately represent key SO properties and processes that influence the large-scale ocean circulation. This has resulted in low confidence ascribed to twenty-first-century projections of the state of the SO from previous generations of models. This analysis provides a detailed assessment of the ability of models contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to represent important observationally based SO properties. Additionally, a comprehensive overview of CMIP6 performance relative to CMIP3 and CMIP5 is presented. CMIP6 models show improved performance in the surface wind stress forcing, simulating stronger and less equatorward-biased wind fields, translating into an improved representation of the Ekman upwelling over the Drake Passage latitudes. An increased number of models simulate an Antarctic Circumpolar Current (ACC) transport within observational uncertainty relative to previous generations; however, several models exhibit extremely weak transports. Generally, the upper SO remains biased warm and fresh relative to observations, and Antarctic sea ice extent remains poorly represented. While generational improvement is found in many metrics, persistent systematic biases are highlighted that should be a priority during model development. These biases need to be considered when interpreting projected trends or biogeochemical properties in this region.


2020 ◽  
Author(s):  
Twan van Noije ◽  
Tommi Bergman ◽  
Philippe Le Sager ◽  
Declan O'Donnell ◽  
Risto Makkonen ◽  
...  

Abstract. This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6). EC-Earth3-AerChem has interactive aerosols and atmospheric chemistry and contributes to the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP). In this paper, we give an overview of the model and describe in detail how it differs from the other EC-Earth3 configurations, and what the new features are compared to the previously documented version of the model (EC-Earth 2.4). We explain how the model was tuned and spun up under pre-industrial conditions and characterize the model's general performance on the basis of a selection of coupled simulations conducted for CMIP6. The mean energy imbalance at the top of the atmosphere in the pre-industrial control simulation is −0.10 ± 0.25 W m−2 and shows no significant drift. The corresponding mean global surface air temperature is 14.05 ± 0.16 °C, with a small drift of −0.075 ± 0.009 °C per century. The model's effective equilibrium climate sensitivity is estimated at 3.9 °C and its transient climate response at 2.1 °C. The CMIP6 historical simulation displays spurious interdecadal variability in Northern Hemisphere temperatures, resulting in a large spread among ensemble members and a tendency to underestimate observed annual surface temperature anomalies from the early 20th century onwards. The observed warming of the Southern Hemisphere is well reproduced by the model. Compared to the ERA5 reanalysis of the European Centre for Medium-Range Weather Forecasts, the ensemble mean surface air temperature climatology for 1995–2014 has an average bias of −0.86 ± 0.35 °C in the Northern Hemisphere and 1.29 ± 0.05 °C in the Southern Hemisphere. The Southern Hemisphere warm bias is largely caused by errors in shortwave cloud radiative effects over the Southern Ocean, a deficiency of many climate models. Changes in the emissions of near-term climate forcers (NTCFs) have significant climate effects from the 20th century onwards. For the SSP3-7.0 shared socio-economic pathway, the model gives a global warming at the end of the 21st century (2091–2100) of 4.9 °C above the pre-industrial mean. A 0.5 °C stronger warming is obtained for the AerChemMIP scenario with reduced emissions of NTCFs. With concurrent reductions of future methane concentrations, the warming is projected to be reduced by 0.5 °C.


2016 ◽  
Vol 9 (11) ◽  
pp. 4019-4028 ◽  
Author(s):  
Peter Good ◽  
Timothy Andrews ◽  
Robin Chadwick ◽  
Jean-Louis Dufresne ◽  
Jonathan M. Gregory ◽  
...  

Abstract. nonlinMIP provides experiments that account for state-dependent regional and global climate responses. The experiments have two main applications: (1) to focus understanding of responses to CO2 forcing on states relevant to specific policy or scientific questions (e.g. change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to the present day), or (2) to understand the state dependence (non-linearity) of climate change – i.e. why doubling the forcing may not double the response. State dependence (non-linearity) of responses can be large at regional scales, with important implications for understanding mechanisms and for general circulation model (GCM) emulation techniques (e.g. energy balance models and pattern-scaling methods). However, these processes are hard to explore using traditional experiments, which explains why they have had so little attention in previous studies. Some single model studies have established novel analysis principles and some physical mechanisms. There is now a need to explore robustness and uncertainty in such mechanisms across a range of models (point 2 above), and, more broadly, to focus work on understanding the response to CO2 on climate states relevant to specific policy/science questions (point 1). nonlinMIP addresses this using a simple, small set of CO2-forced experiments that are able to separate linear and non-linear mechanisms cleanly, with a good signal-to-noise ratio – while being demonstrably traceable to realistic transient scenarios. The design builds on the CMIP5 (Coupled Model Intercomparison Project Phase 5) and CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) protocols, and is centred around a suite of instantaneous atmospheric CO2 change experiments, with a ramp-up–ramp-down experiment to test traceability to gradual forcing scenarios. In all cases the models are intended to be used with CO2 concentrations rather than CO2 emissions as the input. The understanding gained will help interpret the spread in policy-relevant scenario projections. Here we outline the basic physical principles behind nonlinMIP, and the method of establishing traceability from abruptCO2 to gradual forcing experiments, before detailing the experimental design, and finally some analysis principles. The test of traceability from abruptCO2 to transient experiments is recommended as a standard analysis within the CMIP5 and CMIP6 DECK protocols.


Sign in / Sign up

Export Citation Format

Share Document