scholarly journals Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target

Author(s):  
Douglas G. MacMartin ◽  
Katharine L. Ricke ◽  
David W. Keith

Solar geoengineering refers to deliberately reducing net radiative forcing by reflecting some sunlight back to space, in order to reduce anthropogenic climate changes; a possible such approach would be adding aerosols to the stratosphere. If future mitigation proves insufficient to limit the rise in global mean temperature to less than 1.5°C above preindustrial, it is plausible that some additional and limited deployment of solar geoengineering could reduce climate damages. That is, these approaches could eventually be considered as part of an overall strategy to manage the risks of climate change, combining emissions reduction, net-negative emissions technologies and solar geoengineering to meet climate goals. We first provide a physical-science review of current research, research trends and some of the key gaps in knowledge that would need to be addressed to support informed decisions. Next, since few climate model simulations have considered these limited-deployment scenarios, we synthesize prior results to assess the projected response if solar geoengineering were used to limit global mean temperature to 1.5°C above preindustrial in an overshoot scenario that would otherwise peak near 3°C. While there are some important differences, the resulting climate is closer in many respects to a climate where the 1.5°C target is achieved through mitigation alone than either is to the 3°C climate with no geoengineering. This holds for both regional temperature and precipitation changes; indeed, there are no regions where a majority of models project that this moderate level of geoengineering would produce a statistically significant shift in precipitation further away from preindustrial levels.This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’.

Author(s):  
Douglas G. MacMartin ◽  
Ken Caldeira ◽  
David W. Keith

Solar geoengineering has been suggested as a tool that might reduce damage from anthropogenic climate change. Analysis often assumes that geoengineering would be used to maintain a constant global mean temperature. Under this scenario, geoengineering would be required either indefinitely (on societal time scales) or until atmospheric CO 2 concentrations were sufficiently reduced. Impacts of climate change, however, are related to the rate of change as well as its magnitude. We thus describe an alternative scenario in which solar geoengineering is used only to constrain the rate of change of global mean temperature; this leads to a finite deployment period for any emissions pathway that stabilizes global mean temperature. The length of deployment and amount of geoengineering required depends on the emissions pathway and allowable rate of change, e.g. in our simulations, reducing the maximum approximately 0.3°C per decade rate of change in an RCP 4.5 pathway to 0.1°C per decade would require geoengineering for 160 years; under RCP 6.0, the required time nearly doubles. We demonstrate that feedback control can limit rates of change in a climate model. Finally, we note that a decision to terminate use of solar geoengineering does not automatically imply rapid temperature increases: feedback could be used to limit rates of change in a gradual phase-out.


2021 ◽  
Author(s):  
Mengmeng Liu ◽  
Laurie Menviel ◽  
Iain Colin Prentice ◽  
Sandy P. Harrison

<p>There are large uncertainties in the estimation of greenhouse-gas feedbacks: model-based estimates vary considerably; recent observations are too short provide strong constraints. Rapid climate changes during the last glacial period (Dansgaard-Oeschger, D-O, events) are potentially valuable because they are comparable in rate and magnitude to projected future climate warming, and are registered near-globally. Here we use D-O events to quantify the centennial-scale feedback strength of feedbacks involving CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O. We use climate model simulations of the D-O events to estimate the relationship between global mean and Greenland temperature. We then relate global mean temperature changes to changes in greenhouse-gas concentrations derived from ice-core records, and then estimate the associated radiative forcing. We found the magnitude of the feedbacks (expressed in gain, with 95 % confidence interval) to be 0.07 ± 0.02 for CO<sub>2,</sub> 0.04 ± 0.01 for CH<sub>4</sub>, 0.04 ± 0.01 for N<sub>2</sub>O. These estimates are more constrained than previous model-based estimates but comparable to estimates based on recent observations.</p>


2007 ◽  
Vol 20 (5) ◽  
pp. 843-855 ◽  
Author(s):  
J. A. Kettleborough ◽  
B. B. B. Booth ◽  
P. A. Stott ◽  
M. R. Allen

Abstract A method for estimating uncertainty in future climate change is discussed in detail and applied to predictions of global mean temperature change. The method uses optimal fingerprinting to make estimates of uncertainty in model simulations of twentieth-century warming. These estimates are then projected forward in time using a linear, compact relationship between twentieth-century warming and twenty-first-century warming. This relationship is established from a large ensemble of energy balance models. By varying the energy balance model parameters an estimate is made of the error associated with using the linear relationship in forecasts of twentieth-century global mean temperature. Including this error has very little impact on the forecasts. There is a 50% chance that the global mean temperature change between 1995 and 2035 will be greater than 1.5 K for the Special Report on Emissions Scenarios (SRES) A1FI scenario. Under SRES B2 the same threshold is not exceeded until 2055. These results should be relatively robust to model developments for a given radiative forcing history.


2020 ◽  
Vol 163 (3) ◽  
pp. 1427-1442 ◽  
Author(s):  
Steven J Smith ◽  
Jean Chateau ◽  
Kalyn Dorheim ◽  
Laurent Drouet ◽  
Olivier Durand-Lasserve ◽  
...  

AbstractThe relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 °C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 °C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 °C in the 2030–2040 time frame.


2019 ◽  
Author(s):  
Inne Vanderkelen ◽  
Jakob Zschleischler ◽  
Lukas Gudmundsson ◽  
Klaus Keuler ◽  
Francois Rineau ◽  
...  

Abstract. Ecotron facilities allow accurate control of many environmental variables coupled with extensive monitoring of ecosystem processes. They therefore require multivariate perturbation of climate variables, close to what is observed in the field and projections for the future, preserving the co-variances between variables and the projected changes in variability. Here we present a new experimental design for studying climate change impacts on terrestrial ecosystems and apply it to the UHasselt Ecotron Experiment. The new methodology consists of generating climate forcing along a gradient representative of increasingly high global mean temperature anomalies and uses data derived from the best available regional climate model (RCM) projection. We first identified the best performing regional climate model (RCM) simulation for the ecotron site from the Coordinated Regional Downscaling Experiment in the European Domain (EURO-CORDEX) ensemble with a 0.11° (12.5 km) resolution based on two criteria: (i) highest skill of the simulations compared to observations from a nearby weather station and (ii) representativeness of the multi-model mean in future projections. Our results reveal that no single RCM simulation has the best score for all possible combinations of the four meteorological variables and evaluation metrics considered. Out of the six best performing simulations, we selected the simulation with the lowest bias for precipitation (CCLM4-8-17/EC-EARTH), as this variable is key to ecosystem functioning and model simulations deviated the most for this variable, with values ranging up to double the observed values. The time window is subsequently selected from the RCM projection for each ecotron unit based on the global mean temperature of the driving Global Climate Model (GCM). The ecotron units are forced with 3-hourly output from the RCM projections of the five-year period spanning the year in which the global mean temperature crosses the predefined values. With the new approach, Ecotron facilities become able to assess ecosystem responses on changing climatic conditions, while accounting for the co-variation between climatic variables and their projection in variability, well representing possible compound events. The gradient approach will allow to identify possible threshold and tipping points.


2011 ◽  
Vol 15 (3) ◽  
pp. 897-912 ◽  
Author(s):  
N. W. Arnell

Abstract. This paper assesses the relationship between amount of climate forcing – as indexed by global mean temperature change – and hydrological response in a sample of UK catchments. It constructs climate scenarios representing different changes in global mean temperature from an ensemble of 21 climate models assessed in the IPCC AR4. The results show a considerable range in impact between the 21 climate models, with – for example – change in summer runoff at a 2 °C increase in global mean temperature varying between −40% and +20%. There is evidence of clustering in the results, particularly in projected changes in summer runoff and indicators of low flows, implying that the ensemble mean is not an appropriate generalised indicator of impact, and that the standard deviation of responses does not adequately characterise uncertainty. The uncertainty in hydrological impact is therefore best characterised by considering the shape of the distribution of responses across multiple climate scenarios. For some climate model patterns, and some catchments, there is also evidence that linear climate change forcings produce non-linear hydrological impacts. For most variables and catchments, the effects of climate change are apparent above the effects of natural multi-decadal variability with an increase in global mean temperature above 1 °C, but there are differences between catchments. Based on the scenarios represented in the ensemble, the effect of climate change in northern upland catchments will be seen soonest in indicators of high flows, but in southern catchments effects will be apparent soonest in measures of summer and low flows. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation.


2010 ◽  
Vol 7 (5) ◽  
pp. 7633-7667 ◽  
Author(s):  
N. W. Arnell

Abstract. This paper assesses the relationship between amount of climate forcing – as indexed by global mean temperature change – and hydrological response in a sample of UK catchments. It constructs climate scenarios representing different changes in global mean temperature from an ensemble of 21 climate models assessed in the IPCC AR4. The results show a considerable range in impact between the 21 climate models, with – for example – change in summer runoff at a 2 °C increase in global mean temperature varying between −40% and +20%. There is evidence of clustering in the results, particularly in projected changes in summer runoff and indicators of low flows, implying that the ensemble mean is not an appropriate generalised indicator of impact, and that the standard deviation of responses does not adequately characterise uncertainty. The uncertainty in hydrological impact is therefore best characterised by considering the shape of the distribution of responses across multiple climate scenarios. For some climate model patterns, and some catchments, there is also evidence that linear climate change forcings produce non-linear hydrological impacts. For most variables and catchments, the effects of climate change are apparent above the effects of natural multi-decadal variability with an increase in global mean temperature above 1 °C, but there are differences between catchments. Based on the scenarios represented in the ensemble, it is likely that the effect of climate change in northern upland catchments will be seen soonest in indicators of high flows, but in southern catchments effects will be apparent soonest in measures of summer and low flows. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Fang Wang ◽  
Katarzyna B. Tokarska ◽  
Jintao Zhang ◽  
Quansheng Ge ◽  
Zhixin Hao ◽  
...  

To limit global warming to well below 2°C in accord with the Paris Agreement, countries throughout the world have submitted their Intended Nationally Determined Contributions (INDCs) outlining their greenhouse gas (GHG) mitigation actions in the next few decades. However, it remains unclear what the resulting climate change is in response to the proposed INDCs and subsequent emission reductions. In this study, the global and regional warming under the updated INDC scenarios was estimated from a range of comprehensive Earth system models (CMIP5) and a simpler carbon-climate model (MAGICC), based on the relationship of climate response to cumulative emissions. The global GHG emissions under the updated INDC pledges are estimated to reach 14.2∼15.0 GtC/year in 2030, resulting in a global mean temperature increase of 1.29∼1.55°C (median of 1.41°C) above the preindustrial level. By extending the INDC scenarios to 2100, global GHG emissions are estimated to be around 6.4∼9.0 GtC/year in 2100, resulting in a global mean temperature increase by 2.67∼3.74°C (median of 3.17°C). The Arctic warming is projected to be most profound, exceeding the global average by a factor of three by the end of this century. Thus, climate warming under INDC scenarios is projected to greatly exceed the long-term Paris Agreement goal of stabilizing the global mean temperature at to a low level of 1.5‐2.0°C above the pre-industrial. Our study suggests that the INDC emission commitments need to be adjusted and strengthened to bridge this warming gap.


2012 ◽  
Vol 4 (3) ◽  
pp. 212-229 ◽  
Author(s):  
K. Kvale ◽  
K. Zickfeld ◽  
T. Bruckner ◽  
K. J. Meissner ◽  
K. Tanaka ◽  
...  

Abstract Anthropogenic emissions of greenhouse gases could lead to undesirable effects on oceans in coming centuries. Drawing on recommendations published by the German Advisory Council on Global Change, levels of unacceptable global marine change (so-called guardrails) are defined in terms of global mean temperature, sea level rise, and ocean acidification. A global-mean climate model [the Aggregated Carbon Cycle, Atmospheric Chemistry and Climate Model (ACC2)] is coupled with an economic module [taken from the Dynamic Integrated Climate–Economy Model (DICE)] to conduct a cost-effectiveness analysis to derive CO2 emission pathways that both minimize abatement costs and are compatible with these guardrails. Additionally, the “tolerable windows approach” is used to calculate a range of CO2 emissions paths that obey the guardrails as well as a restriction on mitigation rate. Prospects of meeting the global mean temperature change guardrail (2° and 0.2°C decade−1 relative to preindustrial) depend strongly on assumed values for climate sensitivity: at climate sensitivities >3°C the guardrail cannot be attained under any CO2 emissions reduction strategy without mitigation of non-CO2 greenhouse gases. The ocean acidification guardrail (0.2 unit pH decline relative to preindustrial) is less restrictive than the absolute temperature guardrail at climate sensitivities >2.5°C but becomes more constraining at lower climate sensitivities. The sea level rise and rate of rise guardrails (1 m and 5 cm decade−1) are substantially less stringent for ice sheet sensitivities derived in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report, but they may already be committed to violation if ice sheet sensitivities consistent with semiempirical sea level rise projections are assumed.


Sign in / Sign up

Export Citation Format

Share Document