Evaporation kinetics of a polydisperse ensemble of drops

Author(s):  
Alexander A. Ivanov ◽  
Irina V. Alexandrova ◽  
Dmitri V. Alexandrov

A mathematical model of the evaporation of a polydisperse ensemble of drops, with allowance for a nonlinear ‘diffusion’ term in the kinetic equation for the population density distribution function, is developed. The model describes the interaction of a gas phase with vaporizing drops: it has great potential for application in condensed matter physics, thermophysics and engineering devices (e.g. spray drying, cooling, power engineering). The kinetics of heat transfer between phases is theoretically studied. An analytical solution to the integro-differential equations of the process of droplet evaporation is found in a parametric form. Analytical solutions in the presence and absence of the ‘diffusion’ term are compared. It is shown that the fluctuations in particle evaporation rates (‘diffusion’ term in the Fokker–Planck equation) play a decisive role in the evolutionary behaviour of a polydisperse ensemble of vaporizing liquid drops. This article is part of the theme issue ‘Transport phenomena in complex systems (part 1)’.

2018 ◽  
Vol 20 (36) ◽  
pp. 23453-23466 ◽  
Author(s):  
Yong-yang Su ◽  
Rachael E. H. Miles ◽  
Zhi-ming Li ◽  
Jonathan P. Reid ◽  
Jiang Xu

Numerous analytical models have been applied to describe the evaporation/condensation kinetics of volatile components from aerosol particles for use in many applications.


2009 ◽  
Vol 2 (5) ◽  
pp. 2749-2779 ◽  
Author(s):  
C. D. Cappa

Abstract. Aerosol thermodenuders provide a measure of particle volatility. The information provided by a thermodenuder is fundamentally related to the kinetics of evaporation and condensation within the device. Here, a time-dependent, multi-component model of particle and gas-phase mass transfer in a thermodenuder is described. This model explicitly accounts for the temperature profile along the length of a typical thermodenuder and distinguishes between the influence of the heating section and of the adsorbent denuder section. It is shown that "semi-volatile" aerosol is particularly sensitive to the inclusion of the adsorbent denuder in the model. As expected, the mass loss from particles through the thermodenuder is directly related to the compound vapor pressure, although the assumptions regarding the enthalpy of vaporization are shown to also have a large influence on the overall calculated mass thermograms. The model has been validated by comparison with previously measured mass thermograms for single-component aerosols and is shown to provide reasonable semi-quantitative agreement. The model that has been developed here can be used to provide quantitative understanding of aerosol volatility measurements of single and multi-component aerosol made using thermodenuders.


2010 ◽  
Vol 3 (3) ◽  
pp. 579-592 ◽  
Author(s):  
C. D. Cappa

Abstract. Aerosol thermodenuders provide a measure of particle volatility. The information provided by a thermodenuder is fundamentally related to the kinetics of evaporation and condensation within the device. Here, a time-dependent, multi-component model of particle and gas-phase mass transfer in a thermodenuder is described. This model empirically accounts for the temperature profile along the length of a typical thermodenuder and distinguishes between the influence of the heating section and of the adsorbent denuder section. It is shown that "semi-volatile" aerosol is particularly sensitive to the inclusion of an adsorbent denuder in the model. As expected, the mass loss from evaporation of particles as they pass through the thermodenuder is directly related to the compound vapor pressure, although the assumptions regarding the enthalpy of vaporization are shown to also have a large influence on the overall calculated mass thermograms. The model has been validated by comparison with previously measured mass thermograms for single-component aerosols and is shown to provide reasonable semi-quantitative agreement. The model that has been developed here can be used to provide quantitative understanding of aerosol volatility measurements of single and multi-component aerosol made using thermodenuders that include adsorbent denuder sections.


1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


2021 ◽  
Vol 125 (10) ◽  
pp. 2069-2076
Author(s):  
Brendan C. Sweeny ◽  
David C. McDonald ◽  
Nicholas S. Shuman ◽  
Albert A. Viggiano ◽  
Juergen Troe ◽  
...  

2006 ◽  
Vol 19 (12) ◽  
pp. 836-840 ◽  
Author(s):  
Rafael Añez ◽  
Rodolfo Izquierdo ◽  
Alba Vidal ◽  
Tania Cordova ◽  
Aníbal Sierraalta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document