scholarly journals THE CROONIAN LECTURE 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease

1998 ◽  
Vol 353 (1368) ◽  
pp. 583-605 ◽  
Author(s):  
Tony Hunter

The reversible phosphorylation of tyrosines in proteins plays a key role in regulating many different processes in eukaryotic organisms, such as growth control, cell cycle control, differentiation, cell shape and movement, gene transcription, synaptic transmission, and insulin action. Phosphorylation of proteins is brought about by enzymes called protein–tyrosine kinases that add phosphate to specific tyrosines in target proteins; phosphate is removed from phosphorylated tyrosines by enzymes called protein–tyrosine phosphatases. Phosphorylated tyrosines are recognized by specialized binding domains on other proteins, and such interactions are used to initiate intracellular signalling pathways. Currently, more than 95 protein–tyrosine kinases and more than 55 protein–tyrosine phosphatase genes are known in Homo sapiens . Aberrant tyrosine phosphorylation is a hallmark of many types of cancer and other human diseases. Drugs are being developed that antagonize the responsible protein–tyrosine kinases and phosphatases in order to combat these diseases.

2021 ◽  
Vol 22 (9) ◽  
pp. 4417
Author(s):  
Lester J Lambert ◽  
Stefan Grotegut ◽  
Maria Celeridad ◽  
Palak Gosalia ◽  
Laurent JS De Backer ◽  
...  

Many human diseases are the result of abnormal expression or activation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Not surprisingly, more than 30 tyrosine kinase inhibitors (TKIs) are currently in clinical use and provide unique treatment options for many patients. PTPs on the other hand have long been regarded as “undruggable” and only recently have gained increased attention in drug discovery. Striatal-enriched tyrosine phosphatase (STEP) is a neuron-specific PTP that is overactive in Alzheimer’s disease (AD) and other neurodegenerative and neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, and fragile X syndrome. An emergent model suggests that the increase in STEP activity interferes with synaptic function and contributes to the characteristic cognitive and behavioral deficits present in these diseases. Prior efforts to generate STEP inhibitors with properties that warrant clinical development have largely failed. To identify novel STEP inhibitor scaffolds, we developed a biophysical, label-free high-throughput screening (HTS) platform based on the protein thermal shift (PTS) technology. In contrast to conventional HTS using STEP enzymatic assays, we found the PTS platform highly robust and capable of identifying true hits with confirmed STEP inhibitory activity and selectivity. This new platform promises to greatly advance STEP drug discovery and should be applicable to other PTP targets.


2005 ◽  
Vol 185 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Andrew W Stoker

A cornerstone of many cell-signalling events rests on reversible phosphorylation of tyrosine residues on proteins. The reversibility relies on the coordinated actions of protein tyrosine kinases and protein tyrosine phosphatases (PTPs), both of which exist as large protein families. This review focuses on the rapidly evolving field of the PTPs. We now know that rather than simply scavenging phosphotyrosine, the PTPs specifically regulate a wide range of signalling pathways. To illustrate this and to highlight current areas of agreement and contention in the field, this review will present our understanding of PTP action in selected areas and will present current knowledge surrounding the regulatory mechanisms that control PTP enzymes themselves. It will be seen that PTPs control diverse processes such as focal adhesion dynamics, cell–cell adhesion and insulin signalling, and their own actions are in turn regulated by dimerisation, phosphorylation and reversible oxidation.


2011 ◽  
Vol 22 (24) ◽  
pp. 4883-4891 ◽  
Author(s):  
Won Kon Kim ◽  
Hyeyun Jung ◽  
Eun Young Kim ◽  
Do Hyung Kim ◽  
Yee Sook Cho ◽  
...  

Adipocyte differentiation can be regulated by the combined activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). In particular, PTPs act as key regulators in differentiation-associated signaling pathways. We recently found that receptor-type PTPμ (RPTPμ) expression is markedly increased during the adipogenic differentiation of 3T3-L1 preadipocytes and mesenchymal stem cells. Here, we investigate the functional roles of RPTPμ and the mechanism of its involvement in the regulation of signal transduction during adipogenesis of 3T3-L1 cells. Depletion of endogenous RPTPμ by RNA interference significantly inhibited adipogenic differentiation, whereas RPTPμ overexpression led to an increase in adipogenic differentiation. Ectopic expression of p120 catenin suppressed adipocyte differentiation, and the decrease in adipogenesis by p120 catenin was recovered by introducing RPTPμ. Moreover, RPTPμ induced a decrease in the cytoplasmic p120 catenin expression by reducing its tyrosine phosphorylation level, consequently leading to enhanced translocation of Glut-4 to the plasma membrane. On the basis of these results, we propose that RPTPμ acts as a positive regulator of adipogenesis by modulating the cytoplasmic p120 catenin level. Our data conclusively demonstrate that differentiation into adipocytes is controlled by RPTPμ, supporting the utility of RPTPμ and p120 catenin as novel target proteins for the treatment of obesity.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Dimitrios Angelis ◽  
Maria Delivoria-Papadopoulos

Background. Protein tyrosine phosphatases (PTPs) in conjunction with protein tyrosine kinases (PTKs) regulate cellular processes by posttranslational modifications of signal transduction proteins. PTP nonreceptor type 1B (PTP-1B) is an enzyme of the PTP family. We have previously shown that hypoxia induces an increase in activation of a class of nonreceptor PTK, the Src kinases. In the present study, we investigated the changes that occur in the expression of PTP-1B in the cytosolic component of the brain of newborn piglets acutely after hypoxia as well as long term for up to 2 weeks.Methods. Newborn piglets were divided into groups: normoxia, hypoxia, hypoxia followed by 1 day and 15 days in FiO20.21, and hypoxia pretreated with Src kinase inhibitor PP2, prior to hypoxia followed by 1 day and 15 days. Hypoxia was achieved by providing 7% FiO2for 1 hour and PTP-1B expression was measured via immunoblotting.Results. PTP-1B increased posthypoxia by about 30% and persisted for 2 weeks while Src kinase inhibition attenuated the expected PTP-1B-increased expression.Conclusions. Our study suggests that Src kinase mediates a hypoxia-induced increased PTP-1B expression.


2012 ◽  
Vol 07 (03n04) ◽  
pp. 197-217
Author(s):  
ALINE KATZ ◽  
PATRICIA SAENZ-MÉNDEZ ◽  
ALEXANDRA COUSIDO-SIAH ◽  
ALBERTO D. PODJARNY ◽  
OSCAR N. VENTURA

Protein tyrosine phosphorylation is a post-translational modification mechanism, crucial for the regulation of nearly all aspects of cell life. This dynamic, reversible process is regulated by the balanced opposing activity of protein tyrosine kinases and protein tyrosine phosphatases. In particular, the protein tyrosine phosphatase 1B (PTP1B) is implicated in the regulation of the insulin-receptor activity, leptin-stimulated signal transduction pathways and other clinically relevant metabolic routes, and it has been found overexpressed or overregulated in human breasts, colon and ovary cancers. The WPD loop of the enzyme presents an inherent flexibility, and it plays a fundamental role in the enzymatic catalysis, turning it into a potential target in the design of new efficient PTP1B inhibitors. In order to determine the interactions that control the spatial conformation adopted by the WPD loop, complexes between the enzyme and halide ions ( Br- and I- in particular) were crystallized and their crystallographic structure determined, and the collective movements of the aforementioned complexes were studied through Molecular Dynamics (MD) simulations. Both studies yielded concordant results, indicating the existence of a relationship between the identity of the ion present in the complex and the strength of the interactions it establishes with the surrounding protein residues.


1995 ◽  
Vol 305 (2) ◽  
pp. 499-504 ◽  
Author(s):  
W Hendriks ◽  
J Schepens ◽  
C Brugman ◽  
P Zeeuwen ◽  
B Wieringa

Protein tyrosine phosphatases (PTPases) are important regulatory proteins that, together with protein tyrosine kinases, determine the phosphotyrosine levels in cell signalling proteins. By PCR amplification of mouse brain cDNA fragments encoding the catalytic domains of these enzymes, we identified three novel members of the PTPase gene family. Northern-blot analysis showed that two of these novel clones represent brain-specific PTPases, whereas the third originates from a large-sized mRNA that is more ubiquitously expressed. A full-length cDNA encoding one of the brain-specific PTPases, PTP-SL, was isolated. Sequence analysis revealed a transmembrane PTPase containing a single catalytic phosphatase domain that has 45% homology to a rat cytoplasmic brain-specific PTPase named STEP. This suggests a role for PTP-SL in cell-cell signalling processes in the brain.


2005 ◽  
Vol 289 (3) ◽  
pp. C748-C756 ◽  
Author(s):  
Rachel J. Webb ◽  
Jacob D. Judah ◽  
Lee-Chiang Lo ◽  
Geraint M. H. Thomas

Serum albumin secretion from rat hepatocytes proceeds via the constitutive pathway. Although much is known about the role of protein tyrosine phosphorylation in regulated secretion, nothing is known about its function in the constitutive process. Here we show that albumin secretion is inhibited by the tyrosine kinase inhibitor genistein but relatively insensitive to subtype-selective inhibitors or treatments. Secretion is also blocked in a physiologically identical manner by the tyrosine phosphatase inhibitors pervanadate and bisperoxo(1,10-phenanthroline)-oxovanadate. Inhibition of either the kinase(s) or phosphatase(s) leads to the accumulation of albumin between the trans-Golgi and the plasma membrane, whereas the immediate precursor proalbumin builds up in a proximal compartment. The trans-Golgi marker TGN38 is rapidly dispersed under conditions that inhibit tyrosine phosphatase action, whereas the distribution of the cis-Golgi marker GM130 is insensitive to genistein or pervanadate. By using a specifically reactive biotinylation probe, we detected protein tyrosine phosphatases in highly purified rat liver Golgi membranes. These membranes also contain both endogenous tyrosine kinases and their substrates, indicating that enzymes and substrates for reversible tyrosine phosphorylation are normal membrane-resident components of this trafficking compartment. In the absence of perturbation of actin filaments and microtubules, we conclude that reversible protein tyrosine phosphorylation in the trans-Golgi network is essential for albumin secretion and propose that the constitutive secretion of albumin is in fact a regulated process.


Nature ◽  
1991 ◽  
Vol 352 (6337) ◽  
pp. 736-739 ◽  
Author(s):  
Shi-Hsiang Shen ◽  
Lison Bastien ◽  
Barry I. Posner ◽  
Pierre Chrétien

Sign in / Sign up

Export Citation Format

Share Document