EXPERIMENTAL AND THEORETICAL STUDY OF THE MOVEMENT OF THE WPD FLEXIBLE LOOP OF HUMAN PROTEIN TYROSINE PHOSPHATASE PTP1B IN COMPLEX WITH HALIDE IONS

2012 ◽  
Vol 07 (03n04) ◽  
pp. 197-217
Author(s):  
ALINE KATZ ◽  
PATRICIA SAENZ-MÉNDEZ ◽  
ALEXANDRA COUSIDO-SIAH ◽  
ALBERTO D. PODJARNY ◽  
OSCAR N. VENTURA

Protein tyrosine phosphorylation is a post-translational modification mechanism, crucial for the regulation of nearly all aspects of cell life. This dynamic, reversible process is regulated by the balanced opposing activity of protein tyrosine kinases and protein tyrosine phosphatases. In particular, the protein tyrosine phosphatase 1B (PTP1B) is implicated in the regulation of the insulin-receptor activity, leptin-stimulated signal transduction pathways and other clinically relevant metabolic routes, and it has been found overexpressed or overregulated in human breasts, colon and ovary cancers. The WPD loop of the enzyme presents an inherent flexibility, and it plays a fundamental role in the enzymatic catalysis, turning it into a potential target in the design of new efficient PTP1B inhibitors. In order to determine the interactions that control the spatial conformation adopted by the WPD loop, complexes between the enzyme and halide ions ( Br- and I- in particular) were crystallized and their crystallographic structure determined, and the collective movements of the aforementioned complexes were studied through Molecular Dynamics (MD) simulations. Both studies yielded concordant results, indicating the existence of a relationship between the identity of the ion present in the complex and the strength of the interactions it establishes with the surrounding protein residues.

2019 ◽  
Author(s):  
Akarawin Hongdusit ◽  
Peter H. Zwart ◽  
Banumathi Sankaran ◽  
Jerome M. Fox

ABSTRACTProtein tyrosine phosphatases regulate a myriad of essential subcellular signaling events, yet they remain difficult to study in their native biophysical context. Here we develop a minimally disruptive optical approach to control protein tyrosine phosphatase 1B (PTP1B)—an important regulator of receptor tyrosine kinases and a therapeutic target for the treatment of diabetes, obesity, and cancer—and we use that approach to probe the intracellular function of this enzyme. Our conservative architecture for photocontrol, which consists of a protein-based light switch fused to an allosteric regulatory element, preserves the native structure, activity, and subcellular localization of PTP1B, affords changes in activity that match those elicited by post-translational modifications inside the cell, and permits experimental analyses of the molecular basis of optical modulation. Findings indicate, most strikingly, that small changes in the activity of PTP1B can cause large shifts in the phosphorylation states of its regulatory targets.


2020 ◽  
Vol 16 (4) ◽  
pp. 563-574 ◽  
Author(s):  
Rong Y. Han ◽  
Yu Ge ◽  
Ling Zhang ◽  
Qing M. Wang

Background: Protein tyrosine phosphatases 1B are considered to be a desirable validated target for therapeutic development of type II diabetes and obesity. Methods: A new series of imidazolyl flavonoids as potential protein tyrosine phosphatase inhibitors were synthesized and evaluated. Results: Bioactive results indicated that some synthesized compounds exhibited potent protein phosphatase 1B (PTP1B) inhibitory activities at the micromolar range. Especially, compound 8b showed the best inhibitory activity (IC50=1.0 µM) with 15-fold selectivity for PTP1B over the closely related T-cell protein tyrosine phosphatase (TCPTP). Cell viability assays indicated that 8b is cell permeable with lower cytotoxicity. Molecular modeling and dynamics studies revealed the reason for selectivity of PTP1B over TCPTP. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity. Conclusion: Compound 8b should be a potential selective PTP1B inhibitor.


2021 ◽  
Vol 22 (9) ◽  
pp. 4417
Author(s):  
Lester J Lambert ◽  
Stefan Grotegut ◽  
Maria Celeridad ◽  
Palak Gosalia ◽  
Laurent JS De Backer ◽  
...  

Many human diseases are the result of abnormal expression or activation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Not surprisingly, more than 30 tyrosine kinase inhibitors (TKIs) are currently in clinical use and provide unique treatment options for many patients. PTPs on the other hand have long been regarded as “undruggable” and only recently have gained increased attention in drug discovery. Striatal-enriched tyrosine phosphatase (STEP) is a neuron-specific PTP that is overactive in Alzheimer’s disease (AD) and other neurodegenerative and neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, and fragile X syndrome. An emergent model suggests that the increase in STEP activity interferes with synaptic function and contributes to the characteristic cognitive and behavioral deficits present in these diseases. Prior efforts to generate STEP inhibitors with properties that warrant clinical development have largely failed. To identify novel STEP inhibitor scaffolds, we developed a biophysical, label-free high-throughput screening (HTS) platform based on the protein thermal shift (PTS) technology. In contrast to conventional HTS using STEP enzymatic assays, we found the PTS platform highly robust and capable of identifying true hits with confirmed STEP inhibitory activity and selectivity. This new platform promises to greatly advance STEP drug discovery and should be applicable to other PTP targets.


2009 ◽  
Vol 297 (1) ◽  
pp. C133-C139 ◽  
Author(s):  
Shirley C. Chen ◽  
Ranvikram S. Khanna ◽  
Darrell C. Bessette ◽  
Lionel A. Samayawardhena ◽  
Catherine J. Pallen

Protein tyrosine phosphatase-α (PTPα) is a widely expressed receptor-type phosphatase that functions in multiple signaling systems. The actions of PTPα can be regulated by its phosphorylation on serine and tyrosine residues, although little is known about the conditions that promote PTPα phosphorylation. In this study, we tested the ability of several extracellular factors to stimulate PTPα tyrosine phosphorylation. The growth factors IGF-I and acidic FGF induced the highest increase in PTPα phosphorylation at tyrosine 789, followed by PMA and lysophosphatidic acid, while EGF had little effect. Further investigation of IGF-I-induced PTPα tyrosine phosphorylation demonstrated that this occurs through a novel Src family kinase-independent mechanism that does not require focal adhesion kinase, phosphatidylinositol 3-kinase, or MEK. We also show that PTPα physically interacts with the IGF-I receptor. In contrast to IGF-I-induced PTPα phosphorylation, this association does not require IGF-I. The interaction of PTPα and the IGF-I receptor is independent of PTPα catalytic activity, and expression of exogenous PTPα does not promote IGF-I receptor tyrosine dephosphorylation, indicating that PTPα does not act as an IGF-I receptor phosphatase. However, PTPα mediates IGF-I signaling, because IGF-I-stimulated fibroblast migration was reduced by ∼50% in cells lacking PTPα or in cells with mutant PTPα lacking the tyrosine 789 phosphorylation site. Our results suggest that PTPα tyrosine phosphorylation can occur in response to diverse stimuli and can be mediated by various tyrosine kinases. In the case of IGF-I, we propose that IGF-I-induced tyrosine 789 phosphorylation of PTPα, possibly catalyzed by the PTPα-associated IGF-I receptor tyrosine kinase, is required for efficient cell migration in response to this growth factor.


1998 ◽  
Vol 187 (11) ◽  
pp. 1863-1870 ◽  
Author(s):  
Akio Matsuda ◽  
Satoshi Motoya ◽  
Shioko Kimura ◽  
Renee McInnis ◽  
Abby L. Maizel ◽  
...  

CD45-AP specifically associates with CD45, a protein tyrosine phosphatase essential for lymphocyte differentiation and antigen receptor–mediated signal transduction. CD45 is thought to mediate antigen receptor signaling by dephosphorylating regulatory tyrosine residues on Src family protein tyrosine kinases such as Lck. However, the mechanism for regulating CD45 protein tyrosine phosphatase activity remains unclear. CD45-AP–null mice were created to examine the role of CD45-AP in CD45-mediated signal transduction. T and B lymphocytes showed reduced proliferation in response to antigen receptor stimulation. Both mixed leukocyte reaction and cytotoxic T lymphocyte functions of T cells were also markedly decreased in CD45-AP–null mice. Interestingly, the interaction between CD45 and Lck was significantly reduced in CD45-AP–null T cells, indicating that CD45-AP directly or indirectly mediates the interaction of CD45 with Lck. Our data indicate that CD45-AP is required for normal antigen receptor signaling and function in lymphocytes.


2011 ◽  
Vol 22 (24) ◽  
pp. 4883-4891 ◽  
Author(s):  
Won Kon Kim ◽  
Hyeyun Jung ◽  
Eun Young Kim ◽  
Do Hyung Kim ◽  
Yee Sook Cho ◽  
...  

Adipocyte differentiation can be regulated by the combined activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). In particular, PTPs act as key regulators in differentiation-associated signaling pathways. We recently found that receptor-type PTPμ (RPTPμ) expression is markedly increased during the adipogenic differentiation of 3T3-L1 preadipocytes and mesenchymal stem cells. Here, we investigate the functional roles of RPTPμ and the mechanism of its involvement in the regulation of signal transduction during adipogenesis of 3T3-L1 cells. Depletion of endogenous RPTPμ by RNA interference significantly inhibited adipogenic differentiation, whereas RPTPμ overexpression led to an increase in adipogenic differentiation. Ectopic expression of p120 catenin suppressed adipocyte differentiation, and the decrease in adipogenesis by p120 catenin was recovered by introducing RPTPμ. Moreover, RPTPμ induced a decrease in the cytoplasmic p120 catenin expression by reducing its tyrosine phosphorylation level, consequently leading to enhanced translocation of Glut-4 to the plasma membrane. On the basis of these results, we propose that RPTPμ acts as a positive regulator of adipogenesis by modulating the cytoplasmic p120 catenin level. Our data conclusively demonstrate that differentiation into adipocytes is controlled by RPTPμ, supporting the utility of RPTPμ and p120 catenin as novel target proteins for the treatment of obesity.


2001 ◽  
Vol 13 (3) ◽  
pp. 175 ◽  
Author(s):  
Seppo Partanen

Protein tyrosine phosphatase (PTP) activity was demonstrated in human endometrium by a histochemical method using phosphotyrosine as substrate. For comparative purposes, non-specific acid phosphatase (AcP) activity was also examined. Protein tyrosine phosphatase activity was very low in proliferative and atrophic endometrium, but its activity was increased 9-fold in glandular epithelium during the secretory phase, and 48-fold in predecidual endometrium, induced by a progestagen-releasing intrauterine device, compared with the proliferative endometrium. Thus, PTP activity appeared to be progesterone-induced. Endometrial PTP appeared to be cellular rather than secretory in origin; its activity was inhibited by vanadate, and its histochemical properties were different from those of lysosomal AcP, but similar to those of prostatic-type AcP. Endometrial PTP may functionally counteract the effects of protein tyrosine kinases (PTKs) associated with growth factor receptors and cellular oncoproteins. Cyclic endometrial proliferation and differentiation are thought to be regulated by the autocrine and paracrine pathways by growth factors such as epidermal growth factor, insulin-like growth factor I and platelet-derived growth factors, and their receptors. However, cessation of proliferation could not be explained by the amounts of these growth factors present or their receptors, in that no constant changes at the interface of the late proliferative and early secretory phases were found. Down-regulation of stimulatory-signalling pathways of PTKs by endometrial PTP induced by progesterone may explain the decrease observed in proliferative activity of glandular cells in cyclic endometrium.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4355-4355
Author(s):  
Pablo Perez-Pinera ◽  
Wei Zhang ◽  
Zhaoyi Wang ◽  
James R. Berenson ◽  
Thomas F. Deuel

Abstract Anaplastic Lymphoma Kinase (ALK) is a receptor-type transmembrane tyrosine kinase (RTK) of the insulin receptor superfamily that structurally is most closely related to leukocyte tyrosine kinase. It was first discovered as a chimeric protein (NPM-ALK) of nucleophosmin and the C-terminal (kinase) domain of ALK in anaplastic large cell lymphomas (ALCL). NPM-ALK is constitutively active and generates the oncogenic signals that are the pathogenic mechanisms of these highly malignant cancers. The full-length ALK also is believed to have an important role in the pathogenesis of other human malignancies, since its expression is found in rhabdomyosarcomas, neuroblastomas, neuroectodermal tumors, glioblastomas, breast carcinomas, and melanomas. Recently it was proposed that pleiotrophin (PTN the protein, Ptn the gene) is the ligand that stimulates ALK to transduce signals to activate downstream targets. However, this proposal contrasted with earlier studies that demonstrated Receptor Protein Tyrosine Phosphatase (RPTP)β/ζ is the functional receptor for PTN. PTN was shown to inactivate RPTPβ/ζ and thereby permit the activity of different tyrosine kinases to increase tyrosine phosphorylation of the substrates of RPTPβ/ζ at the sites that are dephosphorylated by RPTPβ/ζ in cells not stimulated by PTN. Subsequent studies identified β-catenin, β-adducin, Fyn, GIT1/Cat-1, P190RhoGAP, and histone deacetylase 2 (HDAC-2) as downstream targets of the PTN/RPTPβ/ζ signaling pathway and demonstrated that their levels of tyrosine phosphorylation increase in PTN-stimulated cells. This diversity of PTN-regulated targets is one basis for the pleiotrophic activities of PTN. We now demonstrate that tyrosine phosphorylation of ALK is increased in PTN-stimulated cells through the PTN/RPTPβ/ζ signaling pathway. It is furthermore shown that ALK is activated in PTN-stimulated cells when it is expressed in cells without its extracellular domain, that β-catenin is a substrate of ALK, that the tyrosine phosphorylation site in β-catenin phosphorylated by ALK is the same site dephosphorylated by RPTPβ/ζ, and that PTN-stimulated tyrosine phosphorylation of β-catenin requires expression of ALK. The data suggest a unique mechanism to activate ALK; the data support a mechanism in which β-catenin is phosphorylated in tyrosine through the coordinated inactivation of RPTPβ/ζ, the activation of the tyrosine kinase activity of ALK, and the phosphorylation of β-catenin by ALK at the same site regulated by RPTPβ/ζ in PTN-stimulated cells. Since PTN often is inappropriately expressed in the same malignancies that express ALK, the data suggest a mechanism through which ALK signaling may contribute to those malignancies that express full length ALK through the activity of PTN to signal constitutively the same pathways as NPM-ALK in ALCL.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 752-752
Author(s):  
Hao Wang ◽  
Stephan Lindsey ◽  
Iwona Konieczna ◽  
Elizabeth Horvath ◽  
Ling Bei ◽  
...  

Abstract HOX genes encode highly conserved homeodomain (HD) transcription factors and are arranged in four groups (A–D). During definitive hematopoiesis, HOX gene expression is activated 3′ to 5′ through each group. Therefore, HOX1-4 are actively transcribed in hematopoietic stem cells and HOX7-11 in committed progenitors. Under normal conditions, HoxA7-11 expression decreases during CD34+ to CD34− maturation. Abnormal Hox expression is characteristic of several poor prognosis subtypes of Acute Myeloid Leukemia (AML) including AML with translocations or duplications of the MLL gene. In such leukemias, expression of HoxB3, B4 and A7-11 is sustained in CD34−CD38+ cells. In murine bone marrow transplantation experiments, expression of MLL fusion proteins, HoxA9 or HoxA10 induces a myeloproliferative disorder (MPD) characterized by increased neutrophils (PMN). Over time, the mice progress to AML with circulating myeloid blasts. These results suggest overexpression of HoxA9 or HoxA10 is adequate for MPD, but differentiation block (AML) requires additional lesions. We found that HoxA9 and HoxA10 proteins not only decrease in expression during the CD34+ to CD34− transition, but also are tyrosine phosphorylated. In additional studies, we found that HoxA10 tyrosine phosphorylation state is relevant for differentiation stage-specific target gene expression during myelopoiesis. HoxA10 represses genes encoding phagocyte effector proteins in undifferentiated myeloid cells. During myelopoiesis, phosphorylation of conserved HD-HoxA10 tyrosines decreases binding to these genes, permitting phenotypic and functional differentiation. HoxA10 activates transcription of the gene encoding Mkp2 (Dusp4) in myeloid progenitors. Decrease in HoxA10-binding to this gene as differentiation proceeds decreases transcription and renders the cells susceptible to Jnk induced apoptosis. Therefore, we hypothesized that genetic lesions which influence post translational modification might cooperate with HoxA10 overexpression to lead from MPD to AML. In myeloid progenitors, HoxA10 is maintained in a non-phosphorylated state by SHP2 protein tyrosine phosphatase. SHP2 activity decreases as differentiation proceeds. Activating mutations in SHP2 have been described in AML. We found that such activated SHP2 mutants dephosphorylate HoxA10 through out ex vivo myelopoiesis. Therefore, we investigated cooperation between these two leukemia associated abnormalities in vivo. Mice were transplanted with bone marrow overexpressing HoxA10 (or empty vector control) with or without activated SHP2 (E76K). To control for SHP2 overexpression, other mice were transplanted with bone marrow overexpressing HoxA10 and wild type SHP2. Mice transplanted with bone marrow overexpressing HoxA10 (±SHP2) developed MPD which evolved to AML over 4 mos, consistent with previous observations. However, mice transplanted with bone marrow overexpressing HoxA10 and E76K SHP2 developed AML within 4 wks. This rapid development of AML correlated with abnormalities in expression of myeloid specific HoxA10 target genes. These studies indicate the importance of HoxA10 post translational modification for physiologically relevant function and identify cooperating lesions which may be significant for disease progression in human AML.


Sign in / Sign up

Export Citation Format

Share Document