scholarly journals RAD51 localization and activation following DNA damage

Author(s):  
Madalena Tarsounas ◽  
Adelina A. Davies ◽  
Stephen C. West

The efficient repair of double–strand breaks in DNA is critical for the maintenance of genome stability. In response to ionizing radiation and other DNA–damaging agents, the RAD51 protein, which is essential for homologous recombination, relocalizes within the nucleus to form distinct foci that can be visualized by microscopy and are thought to represent sites where repair reactions take place. The formation of RAD51 foci in response to DNA damage is dependent upon BRCA2 and a series of proteins known as the RAD51 paralogues (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3), indicating that the components present within foci assemble in a carefully orchestrated and ordered manner. By contrast, RAD51 foci that form spontaneously as cells undergo DNA replication at S phase occur without the need for BRCA2 or the RAD51 paralogues. It is known that BRCA2 interacts directly with RAD51 through a series of degenerative motifs known as the BRC repeats. These interactions modulate the ability of RAD51 to bind DNA. Taken together, these observations indicate that BRCA2 plays a critical role in controlling the actions of RAD51 at both the microscopic (focus formation) and molecular (DNA binding) level.

1999 ◽  
Vol 181 (15) ◽  
pp. 4549-4553 ◽  
Author(s):  
Teruhito Yamashita ◽  
Katsuhiro Hanada ◽  
Mihoko Iwasaki ◽  
Hirotaka Yamaguchi ◽  
Hideo Ikeda

ABSTRACT Illegitimate recombination that usually takes place at a low frequency is greatly enhanced by treatment with DNA-damaging agents. It is thought that DNA double-strand breaks induced by this DNA damage are important for initiation of illegitimate recombination. Here we show that illegitimate recombination is enhanced by overexpression of the DnaB protein in Escherichia coli. The recombination enhanced by DnaB overexpression occurred between short regions of homology. We propose a model for the initiation of illegitimate recombination in which DnaB overexpression may excessively unwind DNA at replication forks and induce double-strand breaks, resulting in illegitimate recombination. The defect in RecQ has a synergistic effect on the increased illegitimate recombination in cells containing the overproduced DnaB protein, implying that DnaB works in the same pathway as RecQ does but that they work at different steps.


DNA Repair ◽  
2010 ◽  
Vol 9 (8) ◽  
pp. 929-936 ◽  
Author(s):  
Michelle L. Heacock ◽  
Donna F. Stefanick ◽  
Julie K. Horton ◽  
Samuel H. Wilson

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5624-5624
Author(s):  
Dhyani Anamika ◽  
Patricia Favaro ◽  
Sara Teresinha Olalla Saad

Abstract Ankyrin repeat and KH domain-containing protein 1, ANKHD1, is highly expressed in myeloma cells and plays an important role in multiple myeloma (MM) progression and growth. ANKHD1 is found to be overexpressed in S phase of cell cycle in MM cells and silencing of ANKHD1 expression leads to accumulation of cells in S phase, suggesting a role in S phase progression (1). Earlier studies by our group reported that ANKHD1 silencing downregulates all replication dependent histones and that this downregulation may be associated with replication stress and DNA damage (2). We observed increased expression of γH2AX protein (phosphorylated histone H2A variant, H2AX, at Serine 139), a marker for DNA double strand breaks (DSBs) and an early sign of DNA damage induced by replication stress, in ANKHD1 silenced MM cells. In the present study we further sought to investigate the mechanisms underlying the induction of DNA damage on ANKHD1 silencing. We first confirmed the increased expression of γH2AX by flow cytometry analysis and observed that both the mean fluorescence intensity as well as percentage of γH2AX positive cells were higher in ANKHD1 silenced MM cells as compared to control cells. Phosphorylation of histone 2AX requires activation of the phosphatidylinositol-3-OH-kinase-like family of protein kinases, DNA-PKcs (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated)andATR (ATM-Rad3-related) that serves as central components of the signaling cascade initiated by DSBs. Hence, we checked for the expression of these kinases and observed increased phosphorylation of both ATM and ATR kinases in ANKHD1 silenced MM cells. There was no difference in the expressions of DNA-PKcs in control and ANKHD1 silenced cells by western blot. We next checked for the expression of CHK1 (checkpoint kinase 1) and CHK2 (checkpoint kinase 2), essential serine threonine kinases downstream of ATM and ATR. We observed a decrease in pCHK2 (phosphorylated CHK2 at Thr 68), with no change in expression of pCHK1 (phosphorylated CHK1 at Ser 345) total CHK1 or total CHK2. We also checked for expression of CDC25a (a member of the CDC25 family of dual-specificity phosphatases), that is specifically degraded in response to DNA damage (DSBs) and delays S phase progression via activation of ATM /ATR-CHK2 signaling pathway. Expression of CDC25a was significantly decreased in ANKHD1 silencing cells, confirming the induction of DSBs, and probably accounting for S phase delay on ANKHD1 silencing. Since there was decrease in active CHK2 (pCHK2) and no change in CHK1 required for degradation of CDC25a, we assume that decrease in CDC25a in ANKHD1 silenced MM cells may be via activation of ATM/ ATR pathway independent of CHK2/CHK1. Expression of several other downstream factors of DSBs induced DNA damage response and repair such as BRCA1, PTEN, DNMT1, SP1, HDAC2 were also found to be modulated in ANKHD1 silenced MM cells. In conclusion, ANKHD1 silencing in MM cells leads to DNA damage and modulates expression of several genes implicated in DNA damage and repair. DNA damage induced after ANKHD1 silencing in MM cells activates ATM/ ATR-CDC25a pathway which may lead to the activation of S phase checkpoint in MM cells. Results however are preliminary and further studies are required to understand the role of ANKHD1 in intra S phase check point. References: 1) ANKHD1 regulates cell cycle progression and proliferation in multiple myeloma cells. Dhyani et al. FEBS letters 2012; 586: 4311-18. 2) ANKHD1 is essential for repair of DNA double strand breaks in multiple myeloma. Dhyani et al. ASH Abstract, Blood 2015; 126:1762. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 25 (5) ◽  
pp. 1949-1957 ◽  
Author(s):  
Huimei Lu ◽  
Xu Guo ◽  
Xiangbing Meng ◽  
Jingmei Liu ◽  
Chris Allen ◽  
...  

ABSTRACT Homologous recombinational repair (HRR) of DNA damage is critical for maintaining genome stability and tumor suppression. RAD51 and BRCA2 colocalization in nuclear foci is a hallmark of HRR. BRCA2 has important roles in RAD51 focus formation and HRR of DNA double-strand breaks (DSBs). We previously reported that BCCIPα interacts with BRCA2. We show that a second isoform, BCCIPβ, also interacts with BRCA2 and that this interaction occurs in a region shared by BCCIPα and BCCIPβ. We further show that chromatin-bound BRCA2 colocalizes with BCCIP nuclear foci and that most radiation-induced RAD51 foci colocalize with BCCIP. Reducing BCCIPα by 90% or BCCIPβ by 50% by RNA interference markedly reduces RAD51 and BRCA2 foci and reduces HRR of DSBs by 20- to 100-fold. Similarly, reducing BRCA2 by 50% reduces RAD51 and BCCIP foci. These data indicate that BCCIP is critical for BRCA2- and RAD51-dependent responses to DNA damage and HRR.


2019 ◽  
Vol 30 (21) ◽  
pp. 2620-2625 ◽  
Author(s):  
Michael J. Smith ◽  
Eric E. Bryant ◽  
Fraulin J. Joseph ◽  
Rodney Rothstein

During S phase in Saccharomyces cerevisiae, chromosomal loci become mobile in response to DNA double-strand breaks both at the break site (local mobility) and throughout the nucleus (global mobility). Increased nuclear exploration is regulated by the recombination machinery and the DNA damage checkpoint and is likely an important aspect of homology search. While mobility in response to DNA damage has been studied extensively in S phase, the response in interphase has not, and the question of whether homologous recombination proceeds to completion in G1 phase remains controversial. Here, we find that global mobility is triggered in G1 phase. As in S phase, global mobility in G1 phase is controlled by the DNA damage checkpoint and the Rad51 recombinase. Interestingly, despite the restriction of Rad52 mediator foci to S phase, Rad51 foci form at high levels in G1 phase. Together, these observations indicate that the recombination and checkpoint machineries promote global mobility in G1 phase, supporting the notion that recombination can occur in interphase diploids.


2009 ◽  
Vol 187 (7) ◽  
pp. 977-990 ◽  
Author(s):  
Sairei So ◽  
Anthony J. Davis ◽  
David J. Chen

Ataxia telangiectasia mutated (ATM) plays a critical role in the cellular response to DNA damage. In response to DNA double-strand breaks (DSBs), ATM is autophosphorylated at serine 1981. Although this autophosphorylation is widely considered a sign of ATM activation, it is still not clear if autophosphorylation is required for ATM functions including localization to DSBs and activation of ATM kinase activity. In this study, we show that localization of ATM to DSBs is differentially regulated with the initial localization requiring the MRE11–RAD50–NBS1 complex and sustained retention requiring autophosphorylation of ATM at serine 1981. Autophosphorylated ATM interacts with MDC1 and the latter is required for the prolonged association of ATM to DSBs. Ablation of ATM autophosphorylation or knock-down of MDC1 protein affects the ability of ATM to phosphorylate downstream substrates and confer radioresistance. Together, these data suggest that autophosphorylation at serine 1981 stabilizes ATM at the sites of DSBs, and this is required for a proper DNA damage response.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 959-972
Author(s):  
Michael Fasullo ◽  
Peter Giallanza ◽  
Zheng Dong ◽  
Cinzia Cera ◽  
Thomas Bennett

Abstract Saccharomyces cerevisiae Rad51 is structurally similar to Escherichia coli RecA. We investigated the role of S. cerevisiae RAD51 in DNA damage-associated unequal sister chromatid exchanges (SCEs), translocations, and inversions. The frequency of these rearrangements was measured by monitoring mitotic recombination between two his3 fragments, his3-Δ5′ and his3-Δ3′::HOcs, when positioned on different chromosomes or in tandem and oriented in direct or inverted orientation. Recombination was measured after cells were exposed to chemical agents and radiation and after HO endonuclease digestion at his3-Δ3′::HOcs. Wild-type and rad51 mutant strains showed no difference in the rate of spontaneous SCEs; however, the rate of spontaneous inversions was decreased threefold in the rad51 mutant. The rad51 null mutant was defective in DNA damage-associated SCE when cells were exposed to either radiation or chemical DNA-damaging agents or when HO endonuclease-induced double-strand breaks (DSBs) were directly targeted at his3-Δ3′::HOcs. The defect in DNA damage-associated SCEs in rad51 mutants correlated with an eightfold higher spontaneous level of directed translocations in diploid strains and with a higher level of radiation-associated translocations. We suggest that S. cerevisiae RAD51 facilitates genomic stability by reducing nonreciprocal translocations generated by RAD51-independent break-induced replication (BIR) mechanisms.


2020 ◽  
Author(s):  
Tao Shi ◽  
Paulien E. Polderman ◽  
Boudewijn M.T. Burgering ◽  
Tobias B. Dansen

AbstractStabilization and activation of the p53 tumour suppressor are triggered in response to various cellular stresses, including DNA damaging agents and elevated Reactive Oxygen Species (ROS) like H2O2. When cells are exposed to exogenously added H2O2, ATR/CHK1 and ATM/CHK2 dependent DNA damage signaling is switched on, suggesting that H2O2 induces both single and double strand breaks. These collective observations have resulted in the widely accepted model that oxidizing conditions lead to DNA damage that subsequently mediates a p53-dependent response like cell cycle arrest and apoptosis. However, H2O2 induces signaling through stress-activated kinases (SAPK, e.g., JNK and p38MAPK) that can activate p53. Here we dissect to what extent these pathways contribute to functional activation of p53 in response to oxidizing conditions. Collectively, our data suggest that p53 can be activated both by SAPK signaling and the DDR independently of each other, and which of these pathways is activated depends on the type of oxidant used. This implies that it could in principle be possible to modulate redox signaling to stimulate p53 without inducing collateral DNA damage, thereby limiting mutation accumulation in both healthy and tumor tissues.


2018 ◽  
Author(s):  
Lucas W. Hemmer ◽  
Guilherme Dias ◽  
Brittny Smith ◽  
Kelley Van Vaerenberghe ◽  
Ashley Howard ◽  
...  

ABSTRACTGermline DNA damage is a double-edged sword. Programmed double-strand breaks establish the foundation for meiotic recombination and chromosome segregation. However, double-strand breaks also pose a significant challenge for genome stability. Because of this, meiotic double-strand break formation is tightly regulated. However, natural selection can favor selfish behavior in the germline and transposable elements can cause double-strand breaks independent of the carefully regulated meiotic process. To understand how the regulatory mechanisms of meiotic recombination accommodate unregulated transposition, we have characterized the female recombination landscape in a syndrome of hybrid dysgenesis inDrosophila virilis. In this system, a cross between two strains ofD. viriliswith divergent transposable element and piRNA profiles results in germline transposition of diverse transposable elements, reduced fertility, and male recombination. We sought to determine how increased transposition during hybrid dysgenesis might perturb the meiotic recombination landscape. Our results show that the overall frequency and distribution of meiotic recombination is extremely robust to germline transposable element activation. However, we also find that hybrid dysgenesis can result in mitotic recombination within the female germline. Overall, these results show that landscape of meiotic recombination may be insensitive to the DNA damage caused by transposition during early development.


Sign in / Sign up

Export Citation Format

Share Document