scholarly journals Sexual conflict and the alternation of haploid and diploid generations

2006 ◽  
Vol 361 (1466) ◽  
pp. 335-343 ◽  
Author(s):  
David Haig ◽  
Amity Wilczek

Land plants possess a multicellular diploid stage (sporophyte) that begins development while attached to a multicellular haploid progenitor (gametophyte). Although the closest algal relatives of land plants lack a multicellular sporophyte, they do produce a zygote that grows while attached to the maternal gametophyte. The diploid offspring shares one haploid set of genes with the haploid mother that supplies it with resources and a paternal haploid complement that is not shared with the mother. Sexual conflict can arise within the diploid offspring because the offspring's maternal genome will be transmitted in its entirety to all other sexual and asexual offspring that the mother may produce, but the offspring's paternally derived genes may be absent from these other offspring. Thus, the selective forces favouring the evolution of genomic imprinting may have been present from the origin of modern land plants. In bryophytes, where gametophytes are long-lived and capable of multiple bouts of asexual and sexual reproduction, we predict strong sexual conflict over allocation to sporophytes. Female gametophytes of pteridophytes produce a single sporophyte and often lack means of asexual reproduction. Therefore, sexual conflict is predicted to be attenuated. Finally, we explore similarities among models of mate choice, offspring choice and segregation distortion.

2021 ◽  
Author(s):  
Sydney Stork ◽  
Joseph Jalinsky ◽  
Maurine Neiman

Once-useful traits that no longer contribute to fitness tend to decay over time. We address whether the expression of mating-related traits that increase the fitness of sexually reproducing individuals but are likely less useful or even costly to asexual counterparts seems to exhibit decay in the latter. Potamopyrgus antipodarum is a New Zealand freshwater snail characterized by repeated transitions from sexual to asexual reproduction. The frequent coexistence of sexual and asexual lineages makes P. antipodarum an excellent model for the study of mating-related trait loss. We used a mating choice assay including sexual and asexual P. antipodarum females and conspecific (presumed better choice) vs. heterospecific (presumed worse choice) males to evaluate the loss of behavioural traits related to sexual reproduction. We found that sexual females engaged in mating behaviours with conspecific mating partners more frequently and for a greater duration than with heterospecific mating partners, while asexual females seemed to lack the ability to make a choice. These results suggest that selection acting to maintain mate choice in asexual P. antipodarum is weak or ineffective relative to sexual females and that asexual reproduction likely contributes to the evolutionary decay of behavioural traits in this system.


Author(s):  
Sean A. Montgomery ◽  
Frédéric Berger

AbstractGenomic imprinting results in the biased expression of alleles depending on if the allele was inherited from the mother or the father. Despite the prevalence of sexual reproduction across eukaryotes, imprinting is only found in placental mammals, flowering plants, and some insects, suggesting independent evolutionary origins. Numerous hypotheses have been proposed to explain the selective pressures that favour the innovation of imprinted gene expression and each differs in their experimental support and predictions. Due to the lack of investigation of imprinting in land plants, other than angiosperms with triploid endosperm, we do not know whether imprinting occurs in species lacking endosperm and with embryos developing on maternal plants. Here, we discuss the potential for uncovering additional examples of imprinting in land plants and how these observations may provide additional support for one or more existing imprinting hypotheses.


Impact ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 73-75
Author(s):  
Akihiko Watanabe

One of the unifying traits of life on this planet is reproduction, or life's ability to make copies of itself. The mode of reproduction has evolved over time, having almost certainly begun with simple asexual reproduction when the ancestral single celled organism divided into two. Since these beginnings' life has tried out numerous strategies, and perhaps one of the most important and successful has been sexual reproduction. This form of reproduction relies on the union of gametes, otherwise known as sperm and egg. Evolutionarily, sexual reproduction allows for greater adaptive potential because the genes of two unique individuals have a chance to recombine and mix in order to produce a new individual. Unlike asexual reproduction which produces genetically-identical clones of the parent individual, sex produces offspring with novel genes and combinations of genes. Therefore, in the face of new selective pressures there is a higher chance that one of these novel genetic profiles will produce an adaptation that is advantageous in the new circumstances. Dr Akihiko Watanabe is a reproductive biologist based in the Department of Biology, Faculty of Science Yamagata University in Japan, he is currently working on three research projects; a comparative study on the signalling pathways for inducing sperm motility and acrosome reaction in amphibians, the mechanism behind the adaptive modification of sperm morphology and motility, and the origin of sperm motility initiating substance (SMIS).


Genetics ◽  
2003 ◽  
Vol 164 (3) ◽  
pp. 1099-1118 ◽  
Author(s):  
Sarah P Otto

AbstractIn diploids, sexual reproduction promotes both the segregation of alleles at the same locus and the recombination of alleles at different loci. This article is the first to investigate the possibility that sex might have evolved and been maintained to promote segregation, using a model that incorporates both a general selection regime and modifier alleles that alter an individual’s allocation to sexual vs. asexual reproduction. The fate of different modifier alleles was found to depend strongly on the strength of selection at fitness loci and on the presence of inbreeding among individuals undergoing sexual reproduction. When selection is weak and mating occurs randomly among sexually produced gametes, reductions in the occurrence of sex are favored, but the genome-wide strength of selection is extremely small. In contrast, when selection is weak and some inbreeding occurs among gametes, increased allocation to sexual reproduction is expected as long as deleterious mutations are partially recessive and/or beneficial mutations are partially dominant. Under strong selection, the conditions under which increased allocation to sex evolves are reversed. Because deleterious mutations are typically considered to be partially recessive and weakly selected and because most populations exhibit some degree of inbreeding, this model predicts that higher frequencies of sex would evolve and be maintained as a consequence of the effects of segregation. Even with low levels of inbreeding, selection is stronger on a modifier that promotes segregation than on a modifier that promotes recombination, suggesting that the benefits of segregation are more likely than the benefits of recombination to have driven the evolution of sexual reproduction in diploids.


2021 ◽  
pp. 1168-1174
Author(s):  
A.A. Poroshina ◽  
◽  
D.Yu. Sherbakov ◽  

Abstract. Using a computer simulation model, we tried to investigate how the transition from sexual reproduction to asexual reproduction will affect the population of diploid organisms with a neutral character of molecular evolution. At the same time, special attention was paid to the specificity of microsatellite markers. In this paper, we develop fast and inexpensive methods for assessing the changes in populations that occur with a change in reproductive strategy.


2021 ◽  
Author(s):  
Hugh Dawson

Abstract C. demersum is a cosmopolitan submerged aquatic species that has probably already invaded most of its potential exotic range. It has the advantages of being a perennial surviving well over-winter in deeper water and by growing both by asexual reproduction of broken or complete stems and by sexual reproduction of very many seeds. It has a wide ecological tolerance and grows relatively fast. Disturbance of the water body results in increases in growth through changes in nutrient availability but also in faster dispersal around water bodies allowing greater competition with less vigorous species.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Zheng Wang ◽  
Cristina Miguel-Rojas ◽  
Francesc Lopez-Giraldez ◽  
Oded Yarden ◽  
Frances Trail ◽  
...  

ABSTRACTFungal spores germinate and undergo vegetative growth, leading to either asexual or sexual reproductive dispersal. Previous research has indicated that among developmental regulatory genes, expression is conserved across nutritional environments, whereas pathways for carbon and nitrogen metabolism appear highly responsive—perhaps to accommodate differential nutritive processing. To comprehensively investigate conidial germination and the adaptive life history decision-making underlying these two modes of reproduction, we profiled transcription ofNeurospora crassagerminating on two media: synthetic Bird medium, designed to promote asexual reproduction; and a natural maple sap medium, on which both asexual reproduction and sexual reproduction manifest. A later start to germination but faster development was observed on synthetic medium. Metabolic genes exhibited altered expression in response to nutrients—at least 34% of the genes in the genome were significantly downregulated during the first two stages of conidial germination on synthetic medium. Knockouts of genes exhibiting differential expression across development altered germination and growth rates, as well as in one case causing abnormal germination. A consensus Bayesian network of these genes indicated especially tight integration of environmental sensing, asexual and sexual development, and nitrogen metabolism on a natural medium, suggesting that in natural environments, a more dynamic and tentative balance of asexual and sexual development may be typical ofN. crassacolonies.IMPORTANCEOne of the most remarkable successes of life is its ability to flourish in response to temporally and spatially varying environments. Fungi occupy diverse ecosystems, and their sensitivity to these environmental changes often drives major fungal life history decisions, including the major switch from vegetative growth to asexual or sexual reproduction. Spore germination comprises the first and simplest stage of vegetative growth. We examined the dependence of this early life history on the nutritional environment using genome-wide transcriptomics. We demonstrated that for developmental regulatory genes, expression was generally conserved across nutritional environments, whereas metabolic gene expression was highly labile. The level of activation of developmental genes did depend on current nutrient conditions, as did the modularity of metabolic and developmental response network interactions. This knowledge is critical to the development of future technologies that could manipulate fungal growth for medical, agricultural, or industrial purposes.


2019 ◽  
Vol 15 (3) ◽  
pp. 20180871 ◽  
Author(s):  
Sutherland K. Maciver ◽  
Zisis Koutsogiannis ◽  
Alvaro de Obeso Fernández del Valle

The amoebae (and many other protists) have traditionally been considered as asexual organisms, but suspicion has been growing that these organisms are cryptically sexual or are at least related to sexual lineages. This contention is mainly based on genome studies in which the presence of ‘meiotic genes’ has been discovered. Using RNA-seq (next-generation shotgun sequencing, identifying and quantifying the RNA species in a sample), we have found that the entire repertoire of meiotic genes is expressed in exponentially growing Acanthamoeba and we argue that these so-called meiotic genes are involved in the related process of homologous recombination in this amoeba. We contend that they are only involved in meiosis in other organisms that indulge in sexual reproduction and that homologous recombination is important in asexual protists as a guard against the accumulation of mutations. We also suggest that asexual reproduction is the ancestral state.


2020 ◽  
Vol 7 ◽  
Author(s):  
Shidong Yue ◽  
Xiaomei Zhang ◽  
Shaochun Xu ◽  
Yu Zhang ◽  
Peng Zhao ◽  
...  

Seagrasses form a unique group of submerged marine angiosperms capable of both sexual and asexual reproduction. The amounts of sexual and asexual reproduction differ within some species relying on geographic location and environmental factors. Here, we studied the reproductive strategies of different geographic Zostera japonica populations, S1 and S2 at Swan Lake lagoon (SLL), and H1 and H2 at Huiquan Bay (HQB), in northern China. The duration of flowering at SLL was longer than at HQB, whereas flowering initiation at HQB occurred earlier than at SLL. In addition, the timing of seed maturation at HQB occurred earlier than at SLL. The allocation to sexual reproduction at SLL was greater than at HQB. The maximum potential seed production was greatest at S1 (22228.52 ± 8832.46 seeds ⋅ m–2), followed by S2 (21630.34 ± 9378.67 seeds ⋅ m–2), H2 (7459.60 ± 1779.33 seeds ⋅ m–2), and H1 (2821.05 ± 1280.57 seeds ⋅ m–2). The seasonal changes in total shoot density and biomass were small at HQB. There was a relatively large number of overwintering shoots at HQB because of the higher average temperature during winter. The allocation to sexual reproduction was lower than at SLL, and no seedlings were observed at HQB during our study. Thus, the population of Z. japonica at HQB was maintained by asexual reproduction. Compared with HQB, the biomass of overwintering shoots at SLL was less than 30 g dry weight ⋅ m–2. The Z. japonica at SLL relied on asexual and sexual reproduction to maintain the population. The results show the necessity of understanding local reproductive strategies before starting restoration and management projects. The study provides fundamental information and guidance for the conservation and restoration of seagrass beds.


Sign in / Sign up

Export Citation Format

Share Document