scholarly journals Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios

2020 ◽  
Vol 375 (1794) ◽  
pp. 20190189 ◽  
Author(s):  
Amy Molotoks ◽  
Roslyn Henry ◽  
Elke Stehfest ◽  
Jonathan Doelman ◽  
Petr Havlik ◽  
...  

Land-use change is a direct driver of biodiversity and carbon storage loss. Projections of future land use often include notable expansion of cropland areas in response to changes in climate and food demand, although there are large uncertainties in results between models and scenarios. This study examines these uncertainties by comparing three different socio-economic scenarios (SSP1–3) across three models (IMAGE, GLOBIOM and PLUMv2). It assesses the impacts on biodiversity metrics and direct carbon loss from biomass and soil as a direct consequence of cropland expansion. Results show substantial variation between models and scenarios, with little overlap across all nine projections. Although SSP1 projects the least impact, there are still significant impacts projected. IMAGE and GLOBIOM project the greatest impact across carbon storage and biodiversity metrics due to both extent and location of cropland expansion. Furthermore, for all the biodiversity and carbon metrics used, there is a greater proportion of variance explained by the model used. This demonstrates the importance of improving the accuracy of land-based models. Incorporating effects of land-use change in biodiversity impact assessments would also help better prioritize future protection of biodiverse and carbon-rich areas. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.

2021 ◽  
Author(s):  
Zhuo Wang ◽  
Jie Zeng ◽  
Wanxu Chen

Abstract Carbon storage in terrestrial ecosystems, which is the basis of the global carbon cycle, reflects the changes in the environment due to anthropogenic impacts. Rapid and effective assessment of the impact of urban expansion on carbon reserves is vital for the sustainable development of urban ecosystems. Previous studies lack research regarding different scenarios during future city and comprehensive analysis on the driving factors from the socioeconomic point of view. Therefore, this study examined Wuhan, China and explored the latent effects of urban expansion on terrestrial carbon storage by combining the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) and Patch-generating Land Use Simulation (PLUS) model. Based on different socioeconomic strategies, we developed three future scenarios, including Baseline Scenario (BS), Cropland Protection Scenario (CP), and Ecological protection Scenario (EP), to predict the urban built-up land use change from 2015 to 2035 in Wuhan and discussed the carbon storage impacts of urban expansion. The result shows that: (1) Wuhan's urban built-up land area expanded 2.67 times between 1980 and 2015, which is approximately 685.17 km2 and is expected to continuously expand to 1,349–1,945.01 km2 by 2035. (2) Urban expansion in Wuhan has caused carbon storage loss by 5.12×106 t during 1980–2015 and will lead to carbon storage loss by 6.15×106 t, 4.7×106 t, and 4.05×106 t under BS, CP, and EP scenarios from 2015 to 2035, accounting for 85.42%, 81.74%, and 78.79% of the total carbon loss, respectively. (3) The occupation of cropland by urban expansion is closely related to the road system expansion, which is the main driver of carbon storage reduction from 2015 to 2035. (4) We expect that by 2035, the districts facing carbon loss caused by the growth of urban built-up land will expand outward around secondary roads, and the scale of outward expansion under various scenarios will be ranked as: BS >CP > EP. In combination, the InVEST and the PLUS model can assess the impact of urban expansion on carbon storage more efficiently and is conducive to carrying out urban planning and promoting a dynamic balance between urban economic development and human well-being.


2021 ◽  
Vol 53 (1) ◽  
pp. 48-59
Author(s):  
Jennifer B. Thompson ◽  
Leo Zurita-Arthos ◽  
Felix Müller ◽  
Segundo Chimbolema ◽  
Esteban Suárez

2014 ◽  
Vol 53 (6) ◽  
pp. 1066-1076 ◽  
Author(s):  
Yihe Lü ◽  
Zhimin Ma ◽  
Zhijiang Zhao ◽  
Feixiang Sun ◽  
Bojie Fu

Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1310
Author(s):  
Xiaomin Guo ◽  
Chuanglin Fang

Carbon emission (CE) threatens global climate change severely, leading to the continuous strengthening of the greenhouse effect. Land use changes can greatly affect the ecosystem carbon budget and anthropogenic CE. Based on the land use grids, net ecosystem productivity (NEP), energy consumption-related CE, this study employed various methods to investigate the impact of land use change on carbon balance. The results showed 10.03% of total land use area has land use type changed between 2000 and 2015. Built-up land occupied cropland was the main land use transfer type. The period with the most intense land use changes was 2005–2010, which was constant with the process of China’s urbanization. NEP presented an overall increasing trend excluding built-up land and water areas. Temporally, CE showed an increasing trend in 2000–2015, especially in the industry sector. Spatially, areas with the high energy-related CE were mainly distributed in the south, which has a relatively high economic level. The land use intensity values of cities in Jiangsu all presented an overall increasing trend, which is related to the economic development and local endowment. Cities with higher land use intensity were usually accompanied with high CE, suppressing NEP growth. From 2000 to 2015, soil carbon storage reduced by 0.15 × 108 t, vegetation carbon storage reduced by 0.04 × 108 t, and CE reached 17.42 × 108 t. Total CE caused by land use change reached 15.46 × 108 t. The findings can make references for the low-carbon development from ecological land protection, strengthen land management, and optimize urban planning.


2020 ◽  
Vol 12 (3) ◽  
pp. 528 ◽  
Author(s):  
Jingye Li ◽  
Jian Gong ◽  
Jean-Michel Guldmann ◽  
Shicheng Li ◽  
Jie Zhu

Land use/cover change (LUCC) has an important impact on the terrestrial carbon cycle. The spatial distribution of regional carbon reserves can provide the scientific basis for the management of ecosystem carbon storage and the formulation of ecological and environmental policies. This paper proposes a method combining the CA-based FLUS model and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to assess the temporal and spatial changes in ecosystem carbon storage due to land-use changes over 1990–2015 in the Qinghai Lake Basin (QLB). Furthermore, future ecosystem carbon storage is simulated and evaluated over 2020–2030 under three scenarios of natural growth (NG), cropland protection (CP), and ecological protection (EP). The long-term spatial variations in carbon storage in the QLB are discussed. The results show that: (1) Carbon storage in the QLB decreased at first (1990–2000) and increased later (2000–2010), with total carbon storage increasing by 1.60 Tg C (Teragram: a unit of mass equal to 1012 g). From 2010 to 2015, carbon storage displayed a downward trend, with a sharp decrease in wetlands and croplands as the main cause; (2) Under the NG scenario, carbon reserves decrease by 0.69 Tg C over 2020–2030. These reserves increase significantly by 6.77 Tg C and 7.54 Tg C under the CP and EP scenarios, respectively, thus promoting the benign development of the regional ecological environment. This study improves our understanding on the impact of land-use change on carbon storage for the QLB in the northeastern Qinghai–Tibetan Plateau (QTP).


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 306
Author(s):  
Vinicio Carrión-Paladines ◽  
Andreas Fries ◽  
Andrés Muñoz ◽  
Eddy Castillo ◽  
Roberto García-Ruiz ◽  
...  

This study evaluated the effects of land-use change (L-UCH) on dung beetle community structure (Scarabaeinae) in a disturbed dry ecosystem in southern Ecuador. Five different L-UCH classes were analyzed by capturing the dung beetle species at each site using 120 pitfall traps in total. To determine dung beetle abundance and diversity at each L-UCH, a general linear model (GLM) and a redundancy analysis (RDA) were applied, which correlated environmental and edaphic conditions to the community structure. Furthermore, changes in dung-producing vertebrate fauna were examined, which varied significantly between the different L-UCH classes due to the specific anthropogenic use or level of ecosystem disturbance. The results indicated that soil organic matter, pH, potassium, and phosphorus (RDA: component 1), as well as temperature and altitude (RDA: component 2) significantly affect the abundance of beetles (GLM: p value < 0.001), besides the food availability (dung). The highest abundance and diversity (Simpson’s index > 0.4, Shannon-Wiener index > 1.10) was found in highly disturbed sites, where soils were generally more compacted, but with a greater food supply due to the introduced farm animals. At highly disturbed sites, the species Canthon balteatus, Dichotomius problematicus, and Onthphagus confuses were found specifically, which makes them useful as bio-indicators for disturbed dry forest ecosystems in southern Ecuador.


Sign in / Sign up

Export Citation Format

Share Document