scholarly journals The epiallelic potential of transposable elements and its evolutionary significance in plants

Author(s):  
Pierre Baduel ◽  
Vincent Colot

DNA provides the fundamental framework for heritability, yet heritable trait variation need not be completely ‘hard-wired’ into the DNA sequence. In plants, the epigenetic machinery that controls transposable element (TE) activity, and which includes DNA methylation, underpins most known cases of inherited trait variants that are independent of DNA sequence changes. Here, we review our current knowledge of the extent, mechanisms and potential adaptive contribution of epiallelic variation at TE-containing alleles in this group of species. For the purpose of this review, we focus mainly on DNA methylation, as it provides an easily quantifiable readout of such variation. The picture that emerges is complex. On the one hand, pronounced differences in DNA methylation at TE sequences can either occur spontaneously or be induced experimentally en masse across the genome through genetic means. Many of these epivariants are stably inherited over multiple sexual generations, thus leading to transgenerational epigenetic inheritance. Functional consequences can be significant, yet they are typically of limited magnitude and although the same epivariants can be found in nature, the factors involved in their generation in this setting remain to be determined. On the other hand, moderate DNA methylation variation at TE-containing alleles can be reproducibly induced by the environment, again usually with mild effects, and most of this variation tends to be lost across generations. Based on these considerations, we argue that TE-containing alleles, rather than their inherited epiallelic variants, are the main targets of natural selection. Thus, we propose that the adaptive contribution of TE-associated epivariation, whether stable or not, lies predominantly in its capacity to modulate TE mobilization in response to the environment, hence providing hard-wired opportunities for the flexible exploration of the phenotypic space. This article is part of the theme issue ‘How does epigenetics influence the course of evolution?’

2016 ◽  
Author(s):  
Marco Catoni ◽  
Jayne Griffiths ◽  
Claude Becker ◽  
Nicolae Radu Zabet ◽  
Carlos Bayon ◽  
...  

AbstractTransgenerationally heritable epialleles are defined by the stable propagation of alternative transcriptional states through mitotic and meiotic cell cycles. Given that the propagation of DNA methylation at CpG sites, mediated in Arabidopsis by MET1, plays a central role in epigenetic inheritance, we examined genome-wide DNA methylation in partial and complete loss-of-function met1 mutants. We interpreted the data in relation to transgenerational epiallelic stability and provide evidence that DNA sequence features such as density of CpGs and genomic repetitiveness can be used to predict susceptibility to epiallelic switching. The importance of these rules was confirmed by analyses of common epialleles in natural Arabidopsis accessions and verified in rice.


2020 ◽  
Vol 117 (51) ◽  
pp. 32519-32527 ◽  
Author(s):  
Boris Yagound ◽  
Emily J. Remnant ◽  
Gabriele Buchmann ◽  
Benjamin P. Oldroyd

The evolutionary significance of epigenetic inheritance is controversial. While epigenetic marks such as DNA methylation can affect gene function and change in response to environmental conditions, their role as carriers of heritable information is often considered anecdotal. Indeed, near-complete DNA methylation reprogramming, as occurs during mammalian embryogenesis, is a major hindrance for the transmission of nongenetic information between generations. Yet it remains unclear how general DNA methylation reprogramming is across the tree of life. Here we investigate the existence of epigenetic inheritance in the honey bee. We studied whether fathers can transfer epigenetic information to their daughters through DNA methylation. We performed instrumental inseminations of queens, each with four different males, retaining half of each male’s semen for whole genome bisulfite sequencing. We then compared the methylation profile of each father’s somatic tissue and semen with the methylation profile of his daughters. We found that DNA methylation patterns were highly conserved between tissues and generations. There was a much greater similarity of methylomes within patrilines (i.e., father-daughter subfamilies) than between patrilines in each colony. Indeed, the samples’ methylomes consistently clustered by patriline within colony. Samples from the same patriline had twice as many shared methylated sites and four times fewer differentially methylated regions compared to samples from different patrilines. Our findings indicate that there is no DNA methylation reprogramming in bees and, consequently, that DNA methylation marks are stably transferred between generations. This points to a greater evolutionary potential of the epigenome in invertebrates than there is in mammals.


2018 ◽  
Author(s):  
Tom JM Van Dooren ◽  
Amanda Bortolini Silveira ◽  
Elodie Gilbault ◽  
José M. Jiménez-Gómez ◽  
Antoine Martin ◽  
...  

SummaryWhether environmentally induced changes in phenotypes can be heritable is a topic with revived interest, in part because of observations in plants that heritable trait variation can occur without DNA sequence mutations. This other system of inheritance, called transgenerational epigenetics, typically involves differences in DNA methylation that are stable across multiple generations. However, it remains unknown if such a system responds to environmental changes and if it could therefore provide a rapid way for plants to generate adaptive heritable phenotypic variation. Here, we used a well-controlled phenotyping platform and whole-genome bisulfite sequencing to investigate potential heritable effects of mild drought applied over two successive generations in Arabidopsis thaliana. Plastic phenotypic responses were observed in plants exposed to drought. After an intervening generation without stress, descendants of stressed and non-stressed plants were phenotypically indistinguishable, except for very few trait-based parental effects, and irrespective of whether they were grown in control conditions or under water deficit. Moreover, while mild drought induced changes to the DNA methylome of exposed plants, DNA methylation variants were not inherited. These findings add to the growing body of evidence indicating that transgenerational epigenetics is not a common response of plants to environmental changes.


2020 ◽  
Vol 71 (12) ◽  
pp. 3588-3602 ◽  
Author(s):  
Tom J M Van Dooren ◽  
Amanda Bortolini Silveira ◽  
Elodie Gilbault ◽  
José M Jiménez-Gómez ◽  
Antoine Martin ◽  
...  

Abstract There is renewed interest in whether environmentally induced changes in phenotypes can be heritable. In plants, heritable trait variation can occur without DNA sequence mutations through epigenetic mechanisms involving DNA methylation. However, it remains unknown whether this alternative system of inheritance responds to environmental changes and if it can provide a rapid way for plants to generate adaptive heritable phenotypic variation. To assess potential transgenerational effects induced by the environment, we subjected four natural accessions of Arabidopsis thaliana together with the reference accession Col-0 to mild drought in a multi-generational experiment. As expected, plastic responses to drought were observed in each accession, as well as a number of intergenerational effects of the parental environments. However, after an intervening generation without stress, except for a very few trait-based parental effects, descendants of stressed and non-stressed plants were phenotypically indistinguishable irrespective of whether they were grown in control conditions or under water deficit. In addition, genome-wide analysis of DNA methylation and gene expression in Col-0 demonstrated that, while mild drought induced changes in the DNA methylome of exposed plants, these variants were not inherited. We conclude that mild drought stress does not induce transgenerational epigenetic effects.


2021 ◽  
Vol 22 (13) ◽  
pp. 6783
Author(s):  
Renata Orłowska ◽  
Katarzyna A. Pachota ◽  
Wioletta M. Dynkowska ◽  
Agnieszka Niedziela ◽  
Piotr T. Bednarek

A plant genome usually encompasses different families of transposable elements (TEs) that may constitute up to 85% of nuclear DNA. Under stressful conditions, some of them may activate, leading to sequence variation. In vitro plant regeneration may induce either phenotypic or genetic and epigenetic changes. While DNA methylation alternations might be related, i.e., to the Yang cycle problems, DNA pattern changes, especially DNA demethylation, may activate TEs that could result in point mutations in DNA sequence changes. Thus, TEs have the highest input into sequence variation (SV). A set of barley regenerants were derived via in vitro anther culture. High Performance Liquid Chromatography (RP-HPLC), used to study the global DNA methylation of donor plants and their regenerants, showed that the level of DNA methylation increased in regenerants by 1.45% compared to the donors. The Methyl-Sensitive Transposon Display (MSTD) based on methylation-sensitive Amplified Fragment Length Polymorphism (metAFLP) approach demonstrated that, depending on the selected elements belonging to the TEs family analyzed, varying levels of sequence variation were evaluated. DNA sequence contexts may have a different impact on SV generated by distinct mobile elements belonged to various TE families. Based on the presented study, some of the selected mobile elements contribute differently to TE-related SV. The surrounding context of the TEs DNA sequence is possibly important here, and the study explained some part of SV related to those contexts.


2021 ◽  
Vol 22 (7) ◽  
pp. 3735
Author(s):  
Guillaume Velasco ◽  
Damien Ulveling ◽  
Sophie Rondeau ◽  
Pauline Marzin ◽  
Motoko Unoki ◽  
...  

DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 699
Author(s):  
Anna Mrzljak ◽  
Lorena Jemersic ◽  
Vladimir Savic ◽  
Ivan Balen ◽  
Maja Ilic ◽  
...  

Hepatitis E virus (HEV) is the most common cause of viral hepatitis globally. The first human case of autochthonous HEV infection in Croatia was reported in 2012, with the undefined zoonotic transmission of HEV genotype 3. This narrative review comprehensively addresses the current knowledge on the HEV epidemiology in humans and animals in Croatia. Published studies showed the presence of HEV antibodies in different population groups, such as chronic patients, healthcare professionals, voluntary blood donors and professionally exposed and pregnant women. The highest seroprevalence in humans was found in patients on hemodialysis in a study conducted in 2018 (27.9%). Apart from humans, different studies have confirmed the infection in pigs, wild boars and a mouse, indicating the interspecies transmission of HEV due to direct or indirect contact or as a foodborne infection. Continued periodical surveys in humans and animals are needed to identify the possible changes in the epidemiology of HEV infections.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianfeng Xu ◽  
Jiejun Shi ◽  
Xiaodong Cui ◽  
Ya Cui ◽  
Jingyi Jessica Li ◽  
...  

AbstractPromoter DNA methylation is a well-established mechanism of transcription repression, though its global correlation with gene expression is weak. This weak correlation can be attributed to the failure of current methylation quantification methods to consider the heterogeneity among sequenced bulk cells. Here, we introduce Cell Heterogeneity–Adjusted cLonal Methylation (CHALM) as a methylation quantification method. CHALM improves understanding of the functional consequences of DNA methylation, including its correlations with gene expression and H3K4me3. When applied to different methylation datasets, the CHALM method enables detection of differentially methylated genes that exhibit distinct biological functions supporting underlying mechanisms.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 332
Author(s):  
Krystyna Fabianowska-Majewska ◽  
Agnieszka Kaufman-Szymczyk ◽  
Aldona Szymanska-Kolba ◽  
Jagoda Jakubik ◽  
Grzegorz Majewski ◽  
...  

One of the most systematically studied bioactive nutraceuticals for its benefits in the management of various diseases is the turmeric-derived compounds: curcumin. Turmeric obtained from the rhizome of a perennial herb Curcuma longa L. is a condiment commonly used in our diet. Curcumin is well known for its potential role in inhibiting cancer by targeting epigenetic machinery, with DNA methylation at the forefront. The dynamic DNA methylation processes serve as an adaptive mechanism to a wide variety of environmental factors, including diet. Every healthy tissue has a precise DNA methylation pattern that changes during cancer development, forming a cancer-specific design. Hypermethylation of tumor suppressor genes, global DNA demethylation, and promoter hypomethylation of oncogenes and prometastatic genes are hallmarks of nearly all types of cancer, including breast cancer. Curcumin has been shown to modulate epigenetic events that are dysregulated in cancer cells and possess the potential to prevent cancer or enhance the effects of conventional anti-cancer therapy. Although mechanisms underlying curcumin-mediated changes in the epigenome remain to be fully elucidated, the mode of action targeting both hypermethylated and hypomethylated genes in cancer is promising for cancer chemoprevention. This review provides a comprehensive discussion of potential epigenetic mechanisms of curcumin in reversing altered patterns of DNA methylation in breast cancer that is the most commonly diagnosed cancer and the leading cause of cancer death among females worldwide. Insight into the other bioactive components of turmeric rhizome as potential epigenetic modifiers has been indicated as well.


Sign in / Sign up

Export Citation Format

Share Document