scholarly journals Collective knowledge and the dynamics of culture in chimpanzees

Author(s):  
Andrew Whiten ◽  
Rachel A. Harrison ◽  
Nicola McGuigan ◽  
Gillian L. Vale ◽  
Stuart K. Watson

Social learning in non-human primates has been studied experimentally for over 120 years, yet until the present century this was limited to what one individual learns from a single other. Evidence of group-wide traditions in the wild then highlighted the collective context for social learning, and broader ‘diffusion experiments’ have since demonstrated transmission at the community level. In the present article, we describe and set in comparative perspective three strands of our recent research that further explore the collective dimensions of culture and cumulative culture in chimpanzees. First, exposing small communities of chimpanzees to contexts incorporating increasingly challenging, but more rewarding tool use opportunities revealed solutions arising through the combination of different individuals' discoveries, spreading to become shared innovations. The second series of experiments yielded evidence of conformist changes from habitual techniques to alternatives displayed by a unanimous majority of others but implicating a form of quorum decision-making. Third, we found that between-group differences in social tolerance were associated with differential success in developing more complex tool use to exploit an increasingly inaccessible resource. We discuss the implications of this array of findings in the wider context of related studies of humans, other primates and non-primate species. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.

Author(s):  
Elisa Bandini ◽  
Johannes Grossmann ◽  
Martina Funk ◽  
Anna Albiach Serrano ◽  
Claudio Tennie

AbstractNut-cracking using hammer tools has been argued to be one of the most complex tool-use behaviours observed in non-human animals (henceforth: animals). Recently, even the United Nations Convention on the Conservation of Migratory Species (CMS) recognised the unique nature of chimpanzee nut-cracking by making it the first animal behaviour to be awarded UN-protected status (Picheta, 2020). So far, only chimpanzees, capuchins and macaques have been observed using tools to crack nuts in the wild (Boesch & Boesch, 1990; Gumert, Kluck, & Malaivijitnond, 2009; Ottoni & Mannu, 2001). However, the learning mechanisms behind this behaviour, and the extent of nut-cracking in other primate species are still unknown. The aim of this study was two-fold. First, we aimed to examine whether other great ape species would develop nut-cracking when provided with all the tools and motivation to do so. Second, we wanted to examine the mechanisms behind the emergence of nut-cracking in a naïve sample. Orangutans (Pongo abelii; pygmaeus) have not been observed cracking nuts in the wild, despite having the second most extensive tool-use repertoire of the great apes (after chimpanzees), having the materials for the behaviour in the wild (albeit rarely) and possessing flexible problem-solving capacities. Therefore, orangutans are a valid candidate species for the investigation of the development of nut-cracking. Four nut-cracking-naïve orangutans at Leipzig zoo (Pongo abelii; Mage=16; age range=10-19; 4F; at time of testing) were provided with nuts and hammers but were not demonstrated the nut-cracking behavioural form, in order to control for the role of copying social learning in the acquisition of this behaviour. Additionally, we report data from a previously unpublished study by one of the authors (MF) with eight orangutans housed at Zürich zoo (10 Pongo abelii and two Pongo pygmaeus; Mage=14; age range =2-30; 5F; at time of testing) that followed a similar testing paradigm. Out of the twelve orangutans across both testing institutions, at least four individuals, one from Leipzig (Pongo abelii) and three from Zürich (Pongo abelii; pygmaeus), spontaneously expressed nut-cracking with a wooden hammer. These results suggest that the behavioural form of nut-cracking using hammer tools can emerge in orangutans when required through individual learning combined, in some cases, with non-copying social learning mechanisms.


Author(s):  
Alan F. T. Winfield ◽  
Susan Blackmore

This paper presents a series of experiments in collective social robotics, spanning more than 10 years, with the long-term aim of building embodied models of (aspects of) cultural evolution. Initial experiments demonstrated the emergence of behavioural traditions in a group of social robots programmed to imitate each other’s behaviours (we call these Copybots). These experiments show that the noisy (i.e. less than perfect fidelity) imitation that comes for free with real physical robots gives rise naturally to variation in social learning. More recent experimental work extends the robots’ cognitive capabilities with simulation-based internal models, equipping them with a simple artificial theory of mind. With this extended capability we explore, in our current work, social learning not via imitation but robot–robot storytelling, in an effort to model this very human mode of cultural transmission. In this paper, we give an account of the methods and inspiration for these experiments, the experiments and their results, and an outline of possible directions for this programme of research. It is our hope that this paper stimulates not only discussion but suggestions for hypotheses to test with the Storybots. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


2010 ◽  
Vol 7 (4) ◽  
pp. 631-633 ◽  
Author(s):  
Louis Lefebvre

In 1985, Kummer & Goodall pleaded for an ecology of intelligence and proposed that innovations might be a good way to measure cognition in the wild. Counts of innovation per taxonomic group are now available in hundreds of avian and primate species, as are counts of tactical deception, tool use and social learning. Robust evidence suggests that innovation rate and its neural correlates allow birds and mammals to cope better with environmental change. The positive correlations between taxonomic counts, and the increasing number of cognitive and neural measures found to be associated with ecological variables, suggest that domain general processes might be more pervasive than previously thought in the evolution of intelligence.


Author(s):  
Nicolas Bredeche ◽  
Nicolas Fontbonne

In this paper, we present an implementation of social learning for swarm robotics. We consider social learning as a distributed online reinforcement learning method applied to a collective of robots where sensing, acting and coordination are performed on a local basis. While some issues are specific to artificial systems, such as the general objective of learning efficient (and ideally, optimal) behavioural strategies to fulfill a task defined by a supervisor, some other issues are shared with social learning in natural systems. We discuss some of these issues, paving the way towards cumulative cultural evolution in robot swarms, which could enable complex social organization necessary to achieve challenging robotic tasks. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


2017 ◽  
Vol 4 (8) ◽  
pp. 170489 ◽  
Author(s):  
Zosia Ladds ◽  
William Hoppitt ◽  
Neeltje J. Boogert

The use of information provided by others to tackle life's challenges is widespread, but should not be employed indiscriminately if it is to be adaptive. Evidence is accumulating that animals are indeed selective and adopt ‘social learning strategies’. However, studies have generally focused on fish, bird and primate species. Here we extend research on social learning strategies to a taxonomic group that has been neglected until now: otters (subfamily Lutrinae). We collected social association data on captive groups of two gregarious species: smooth-coated otters ( Lutrogale perspicillata ), known to hunt fish cooperatively in the wild, and Asian short-clawed otters ( Aonyx cinereus ), which feed individually on prey requiring extractive foraging behaviours. We then presented otter groups with a series of novel foraging tasks, and inferred social transmission of task solutions with network-based diffusion analysis. We show that smooth-coated otters can socially learn how to exploit novel food sources and may adopt a ‘copy when young’ strategy. We found no evidence for social learning in the Asian short-clawed otters. Otters are thus a promising model system for comparative research into social learning strategies, while conservation reintroduction programmes may benefit from facilitating the social transmission of survival skills in these vulnerable species.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3814 ◽  
Author(s):  
Elisa Bandini ◽  
Claudio Tennie

Modern human technological culture depends on social learning. A widespread assumption for chimpanzee tool-use cultures is that they, too, are dependent on social learning. However, we provide evidence to suggest that individual learning, rather than social learning, is the driver behind determining the form of these behaviours within and across individuals. Low-fidelity social learning instead merely facilitates the reinnovation of these behaviours, and thus helps homogenise the behaviour across chimpanzees, creating the population-wide patterns observed in the wild (what here we call “socially mediated serial reinnovations”). This is the main prediction of the Zone of Latent Solutions (ZLS) hypothesis. This study directly tested the ZLS hypothesis on algae scooping, a wild chimpanzee tool-use behaviour. We provided naïve chimpanzees (n = 14, Mage = 31.33, SD = 10.09) with ecologically relevant materials of the wild behaviour but, crucially, without revealing any information on the behavioural form required to accomplish this task. This study found that naïve chimpanzees expressed the same behavioural form as their wild counterparts, suggesting that, as the ZLS theory predicts, individual learning is the driver behind the frequency of this behavioural form. As more behaviours are being found to be within chimpanzee’s ZLS, this hypothesis now provides a parsimonious explanation for chimpanzee tool cultures.


Author(s):  
S. Wild ◽  
M. Chimento ◽  
K. McMahon ◽  
D. R. Farine ◽  
B. C. Sheldon ◽  
...  

Recent well-documented cases of cultural evolution towards increasing efficiency in non-human animals have led some authors to propose that other animals are also capable of cumulative cultural evolution, where traits become more refined and/or complex over time. Yet few comparative examples exist of traits increasing in complexity, and experimental tests remain scarce. In a previous study, we introduced a foraging innovation into replicate subpopulations of great tits, the ‘sliding-door puzzle’. Here, we track diffusion of a second ‘dial puzzle’, before introducing a two-step puzzle that combines both actions. We mapped social networks across two generations to ask if individuals could: (1) recombine socially-learned traits and (2) socially transmit a two-step trait. Our results show birds could recombine skills into more complex foraging behaviours, and naïve birds across both generations could learn the two-step trait. However, closer interrogation revealed that acquisition was not achieved entirely through social learning—rather, birds socially learned components before reconstructing full solutions asocially. As a consequence, singular cultural traditions failed to emerge, although subpopulations of birds shared preferences for a subset of behavioural variants. Our results show that while tits can socially learn complex foraging behaviours, these may need to be scaffolded by rewarding each component. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


Author(s):  
Robin Schimmelpfennig ◽  
Layla Razek ◽  
Eric Schnell ◽  
Michael Muthukrishna

Human societies are collective brains. People within every society have cultural brains—brains that have evolved to selectively seek out adaptive knowledge and socially transmit solutions. Innovations emerge at a population level through the transmission of serendipitous mistakes, incremental improvements and novel recombinations. The rate of innovation through these mechanisms is a function of (1) a society's size and interconnectedness (sociality), which affects the number of models available for learning; (2) fidelity of information transmission, which affects how much information is lost during social learning; and (3) cultural trait diversity, which affects the range of possible solutions available for recombination. In general, and perhaps surprisingly, all three levers can increase and harm innovation by creating challenges around coordination, conformity and communication. Here, we focus on the ‘paradox of diversity’—that cultural trait diversity offers the largest potential for empowering innovation, but also poses difficult challenges at both an organizational and societal level. We introduce ‘cultural evolvability’ as a framework for tackling these challenges, with implications for entrepreneurship, polarization and a nuanced understanding of the effects of diversity. This framework can guide researchers and practitioners in how to reap the benefits of diversity by reducing costs. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-46
Author(s):  
Alexander Krüger ◽  
Jan Tünnermann ◽  
Lukas Stratmann ◽  
Lucas Briese ◽  
Falko Dressler ◽  
...  

Abstract As a formal theory, Bundesen’s theory of visual attention (TVA) enables the estimation of several theoretically meaningful parameters involved in attentional selection and visual encoding. As of yet, TVA has almost exclusively been used in restricted empirical scenarios such as whole and partial report and with strictly controlled stimulus material. We present a series of experiments in which we test whether the advantages of TVA can be exploited in more realistic scenarios with varying degree of stimulus control. This includes brief experimental sessions conducted on different mobile devices, computer games, and a driving simulator. Overall, six experiments demonstrate that the TVA parameters for processing capacity and attentional weight can be measured with sufficient precision in less controlled scenarios and that the results do not deviate strongly from typical laboratory results, although some systematic differences were found.


2021 ◽  
Author(s):  
Miriam Noël Haidle ◽  
Oliver Schlaudt

AbstractIn our recent article, "Where Does Cumulative Culture Begin? A Plea for a Sociologically Informed Perspective" (Haidle and Schlaudt in Biol Theory 15:161–174, 2020) we commented on a fundamental notion in current approaches to cultural evolution, the “zones of latent solutions” (henceforth ZLS), and proposed a modification of it, namely a social and dynamic interpretation of the latent solutions which were originally introduced within an individualistic framework and as static, genetically fixed entities. This modification seemed, and still seems, relevant to us and, in particular, more adequate for coping with the archaeological record. Bandini et al. (Biol Theory, 2021) rejected our proposition and deemed it unnecessary. In their critique, they focused on: (1) our reservations about an individualistic approach; (2) our objections to the presumption of fully naive individuals; and (3) our demand for an extended consideration of forms of social learning simpler than emulation and imitation. We will briefly reply to their critique in order to clarify some misunderstandings. However, the criticisms also show that we are at an impasse on certain crucial topics, such as the meaning of ZLS and the scope and nature of culture in general. Thus, we consider it necessary to make an additional effort to identify the conceptual roots which are at the very basis of the dissent with Bandini et al.


Sign in / Sign up

Export Citation Format

Share Document