scholarly journals TVA in the wild: Applying the theory of visual attention to game-like and less controlled experiments

2021 ◽  
Vol 3 (1) ◽  
pp. 1-46
Author(s):  
Alexander Krüger ◽  
Jan Tünnermann ◽  
Lukas Stratmann ◽  
Lucas Briese ◽  
Falko Dressler ◽  
...  

Abstract As a formal theory, Bundesen’s theory of visual attention (TVA) enables the estimation of several theoretically meaningful parameters involved in attentional selection and visual encoding. As of yet, TVA has almost exclusively been used in restricted empirical scenarios such as whole and partial report and with strictly controlled stimulus material. We present a series of experiments in which we test whether the advantages of TVA can be exploited in more realistic scenarios with varying degree of stimulus control. This includes brief experimental sessions conducted on different mobile devices, computer games, and a driving simulator. Overall, six experiments demonstrate that the TVA parameters for processing capacity and attentional weight can be measured with sufficient precision in less controlled scenarios and that the results do not deviate strongly from typical laboratory results, although some systematic differences were found.

Author(s):  
Zhuofan Liu ◽  
Wei Yuan ◽  
Yong Ma

The distribution of drivers’ visual attention prior to diverting focus from the driving task is critical for safety. The object of this study is to investigate drivers’ attention strategy before they occlude their vision for different durations under different driving scenarios. A total of 3 (scenarios) × 3 (durations) within-subjects design was applied. Twenty-three participants completed three durations of occlusion (0, 1, and 2 s) test drive in a motion-based driving simulator under three scenarios (urban, rural, motorway). Drivers’ occlusion behaviour, driving behaviour, and visual behaviour in 6 s before occlusion was analyzed and compared. The results showed that drivers tended to slow down and increased their attention on driving task to keep safety in occlusion 2 s condition. The distribution of attention differed among different driving scenarios and occlusion durations. More attention was directed to Forward position and Speedometer in occlusion conditions, and a strong shift in attention from Forward position to Road users and Speedometer was found in occlusion 2 s condition. Road users was glanced more frequently in urban road with a higher percentage of attention transitions from Forward position to Road users. While gaze switching to Speedometer with a higher intensity was found on motorway. It suggests that drivers could adapt their visual attention to driving demand and anticipate the development of upcoming situations by sampling enough driving-related information before eyes-off-road. Moreover, the adaptation and anticipation are in accordance with driving situation and expected eyes-off-road duration. Better knowledge about attentional strategies before attention away from road contributes to more efficient and safe interaction with additional tasks.


2021 ◽  
Author(s):  
Srinivas Kruthiventi S S ◽  
George Jose ◽  
Nitya Tandon ◽  
Rajesh Biswal ◽  
Aashish Kumar
Keyword(s):  

Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 62 ◽  
Author(s):  
Alexander Feierle ◽  
Simon Danner ◽  
Sarah Steininger ◽  
Klaus Bengler

During highly automated driving, the passenger is allowed to conduct non-driving related activities (NDRA) and no longer has to act as a fallback at the functional limits of the driving automation system. Previous research has shown that at lower levels of automation, passengers still wish to be informed about automated vehicle behavior to a certain extent. Due to the aim of the introduction of urban automated driving, which is characterized by high complexity, we investigated the information needs and visual attention of the passenger during urban, highly automated driving. Additionally, there was an investigation into the influence of the experience of automated driving and of NDRAs on these results. Forty participants took part in a driving simulator study. As well as the information presented on the human–machine interface (system status, navigation information, speed and speed limit), participants requested information about maneuvers, reasons for maneuvers, environmental settings and additional navigation data. Visual attention was significantly affected by the NDRA, while the experience of automated driving had no effect. Experience and NDRA showed no significant effect on the need for information. Differences in information needs seem to be due to the requirements of the individual passenger, rather than the investigated factors.


2021 ◽  
Author(s):  
Jan Tünnermann ◽  
Arni Kristjansson ◽  
Anders Petersen ◽  
Anna Schubö ◽  
Ingrid Scharlau

The theory of visual attention, “TVA”, is an influential and formal theory of attentional selection. It is widely applied in clinical assessment of attention and fundamental attention research. However, most TVA-based research is based on accuracy data from letter report experiments performed in controlled laboratory environments. While such basic approaches to questions regarding attentional selection are undoubtedly useful, recent technological advances have enabled the use of increasingly sophisticated experimental paradigms involving more realistic scenarios. Notably, these studies have in many cases resulted in different estimates of capacity limits than those found in studies using traditional TVA-based assessment. Here we review recent developments in TVA-based assessment of attention that goes beyond the use of letter report experiments and experiments performed in controlled laboratory environments. We show that TVA can be used with other tasks and new stimuli, that TVA-based parameter estimation can be embedded into complex scenarios, such as games that can be used to investigate particular problems regarding visual attention, and how TVA-based simulations of “visual foraging” can elucidate attentional control in more naturalistic tasks. We also discuss how these developments may inform future advances of TVA.


2021 ◽  
Author(s):  
◽  
Matthew David Weaver

<p>People are constantly confronted by a barrage of visual information. Visual attention is the crucial mechanism which selects for further processing, subsets of information which are most behaviourally relevant, allowing us to function effectively within our everyday environment. This thesis explored how semantic information (i.e., information which has meaning) encountered within the environment influences the selective orienting of visual attention. Past research has shown semantic information does affect the orienting of attention, but the processes by which it does so remain unclear. The extent of semantic influence on the visual attention system was determined by parsing visual orienting into the tractable components of covert and overt orienting, and capture and hold process stages therein. This thesis consisted of a series of experiments which were designed, utilising well- established paradigms and semantic manipulations in concert with eye-tracking techniques, to test whether the capture and hold of either overt or covert forms of visual attention were influenced by semantic information. Taking together the main findings across all experiments, the following conclusions were drawn. 1) Semantic information differentially influences covert and overt attentional orienting processes. 2) The capture and hold of covert attention is generally uninfluenced by semantic information. 3) Semantic information briefly encountered in the environment can facilitate or prime action independent of covert attentional orienting.4) Overt attention can be both preferentially captured and held by semantically salient information encountered in visual environments. The visual attentional system thus appears to have a complex relationship with semantic information encountered in the visual environment. Semantic information has a differential influence on selective orienting processes that depends on the form of orienting employed and a range of circumstances under which attentional selection takes place.</p>


Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 40-44
Author(s):  
P. A. Vyaznikov ◽  
I. D. Kotilevets

The paper presents the methods of development and the results of research on the effectiveness of the seq2seq neural network architecture using Visual Attention mechanism to solve the im2latex problem. The essence of the task is to create a neural network capable of converting an image with mathematical expressions into a similar expression in the LaTeX markup language. This problem belongs to the Image Captioning type: the neural network scans the image and, based on the extracted features, generates a description in natural language. The proposed solution uses the seq2seq architecture, which contains the Encoder and Decoder mechanisms, as well as Bahdanau Attention. A series of experiments was conducted on training and measuring the effectiveness of several neural network models.


Author(s):  
Hisham Jashami ◽  
David S. Hurwitz ◽  
Christopher Monsere ◽  
Sirisha Kothuri

This research explored driver comprehension and behaviors in Oregon with respect to right-turn signal displays focusing on the Flashing Yellow Arrow (FYA) in a driving simulator. A counterbalanced, factorial design was chosen to explore three independent variables: signal indication type and active display, length of the right-turn bay, and presence of pedestrians. Driver decision-making and visual attention were considered. Data were obtained from 46 participants (21 women, 25 men) turning right 736 times in 16 experimental scenarios. A Mixed-effects Ordered Probit Model and a Linear mixed model were used to examine the influence of driver demographics on observed performance. Results suggest that the FYA indication improves driver comprehension and behavioral responses to the permissive right-turn condition. When presented with the FYA indication in the presence of pedestrians, nearly all drivers exhibited caution while turning and yielding to pedestrians and stopping when necessary. For the same turning maneuver, drivers presented with a circular green (CG) indication were less likely to exhibit correct behavior. At least for Oregon drivers, another clear finding was a general lack of understanding of the steady red arrow (SRA) display for right turns. Most drivers assume the SRA indication requires a different response than the circular red (CR) and remain stopped during the entire red interval, thus resulting in efficiency losses. These findings suggest that transportation agencies could potentially improve driver yielding behavior and pedestrian safety at signalized intersections with high volumes of permissive right turns from exclusive right-turn lanes by using the FYA display in lieu of a steady CG display.


Sign in / Sign up

Export Citation Format

Share Document