scholarly journals An unusual case of infective spondylodiscitis caused by Campylobacter fetus subsp. fetus: molecular characterization by whole-genome sequencing

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Dhiviya Prabaa MS ◽  
Jaya Lakshmi SS ◽  
John Antony Jude Prakash ◽  
Kenny S. David ◽  
Vijay Alagar ◽  
...  

Spondylodiscitis is an infectious inflammation that affects the intervertebral disc and adjacent structures. Treating infective spondylodiscitis is often challenging due to the lack of specific symptoms. Here we present an unusual case of infective spondylodiscitis caused by Campylobacter fetus subsp. fetus .

2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Casper Jamin ◽  
Sien De Koster ◽  
Stefanie van Koeveringe ◽  
Dieter De Coninck ◽  
Klaas Mensaert ◽  
...  

Whole-genome sequencing (WGS) is becoming the de facto standard for bacterial typing and outbreak surveillance of resistant bacterial pathogens. However, interoperability for WGS of bacterial outbreaks is poorly understood. We hypothesized that harmonization of WGS for outbreak surveillance is achievable through the use of identical protocols for both data generation and data analysis. A set of 30 bacterial isolates, comprising of various species belonging to the Enterobacteriaceae family and Enterococcus genera, were selected and sequenced using the same protocol on the Illumina MiSeq platform in each individual centre. All generated sequencing data were analysed by one centre using BioNumerics (6.7.3) for (i) genotyping origin of replications and antimicrobial resistance genes, (ii) core-genome multi-locus sequence typing (cgMLST) for Escherichia coli and Klebsiella pneumoniae and whole-genome multi-locus sequencing typing (wgMLST) for all species. Additionally, a split k-mer analysis was performed to determine the number of SNPs between samples. A precision of 99.0% and an accuracy of 99.2% was achieved for genotyping. Based on cgMLST, a discrepant allele was called only in 2/27 and 3/15 comparisons between two genomes, for E. coli and K. pneumoniae, respectively. Based on wgMLST, the number of discrepant alleles ranged from 0 to 7 (average 1.6). For SNPs, this ranged from 0 to 11 SNPs (average 3.4). Furthermore, we demonstrate that using different de novo assemblers to analyse the same dataset introduces up to 150 SNPs, which surpasses most thresholds for bacterial outbreaks. This shows the importance of harmonization of data-processing surveillance of bacterial outbreaks. In summary, multi-centre WGS for bacterial surveillance is achievable, but only if protocols are harmonized.


2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Isabelle Bernaquez ◽  
Christiane Gaudreau ◽  
Pierre A. Pilon ◽  
Sadjia Bekal

Many public health laboratories across the world have implemented whole-genome sequencing (WGS) for the surveillance and outbreak detection of foodborne pathogens. PulseNet-affiliated laboratories have determined that most single-strain foodborne outbreaks are contained within 0–10 multi-locus sequence typing (MLST)-based allele differences and/or core genome single-nucleotide variants (SNVs). In addition to being a food- and travel-associated outbreak pathogen, most Shigella spp. cases occur through continuous person-to-person transmission, predominantly involving men who have sex with men (MSM), leading to long-term and recurrent outbreaks. Continuous transmission patterns coupled to genetic evolution under antibiotic treatment pressure require an assessment of existing WGS-based subtyping methods and interpretation criteria for cluster inclusion/exclusion. An evaluation of 4 WGS-based subtyping methods [SNVPhyl, coreMLST, core genome MLST (cgMLST) and whole-genome MLST (wgMLST)] was performed on 9 foodborne-, travel- and MSM-related retrospective outbreaks from a collection of 91 Shigella flexneri and 232  Shigella sonnei isolates to determine the methods’ epidemiological concordance, discriminatory power, robustness and ability to generate stable interpretation criteria. The discriminatory powers were ranked as follows: coreMLST<SNVPhyl<cgMLST<wgMLST (range: 0.970–1.000). The genetic differences observed for non-MSM-related Shigella spp. outbreaks respect the standard 0–10 allele/SNV guideline; however, mobile genetic element (MGE)-encoded loci caused inflated genetic variation and discrepant phylogenies for prolonged MSM-related S. sonnei outbreaks via wgMLST. The S. sonnei correlation coefficients of wgMLST were also the lowest at 0.680, 0.703 and 0.712 for SNVPhyl, coreMLST and cgMLST, respectively. Plasmid maintenance, mobilization and conjugation-associated genes were found to be the main source of genetic distance inflation in addition to prophage-related genes. Duplicated alleles arising from the repeated nature of IS elements were also responsible for many false cg/wgMLST differences. The coreMLST approach was shown to be the most robust, followed by SNVPhyl and wgMLST for inter-laboratory comparability. Our results highlight the need for validating species-specific subtyping methods based on microbial genome plasticity and outbreak dynamics in addition to the importance of filtering confounding MGEs for cluster detection.


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Bojan Papić ◽  
Majda Golob ◽  
Irena Zdovc ◽  
Jana Avberšek ◽  
Metka Pislak Ocepek ◽  
...  

The spore-forming bacterium Paenibacillus larvae is the causative agent of American foulbrood (AFB), a devastating disease of honeybees (Apis mellifera). In the present study, we used whole-genome sequencing (WGS) to investigate an extensive outbreak of AFB in northwestern Slovenia in 2019. A total of 59 P . larvae isolates underwent WGS, of which 40 originated from a single beekeeping operation, to assess the diversity of P. larvae within the beekeeping operation, apiary and colony. By applying a case-specific single-linkage threshold of 34 allele differences (AD), whole-genome multilocus sequence typing (wgMLST) identified two outbreak clusters represented by ERIC II-ST11 clones. All isolates from a single beekeeping operation fell within cluster 1 and the median pairwise AD between them was 10 (range=1–22). The median pairwise AD for apiaries of the same beekeeping operation ranged from 8 to 11 (min.=1, max.=22). For colonies of the same apiary and honey samples from these colonies, the median pairwise AD ranged from 8 to 14 (min.=1, max.=20). The maximum within-cluster distance was 33 pairwise AD for cluster 1 and 44 for cluster 2 isolates. The minimum distance between the outbreak-related and non-related isolates was 37 AD, confirming the importance of associated epidemiological data for delineating outbreak clusters. The observed transmission events could be explained by the activities of honeybees and beekeepers. The present study provides insight into the genetic diversity of P. larvae at different levels and thus provides information for future AFB surveillance.


2020 ◽  
Vol 70 (11) ◽  
pp. 5958-5963
Author(s):  
Yuh Morimoto ◽  
Mari Tohya ◽  
Zulipiya Aibibula ◽  
Tadashi Baba ◽  
Hiroyuki Daida ◽  
...  

The taxonomic classification of Pseudomonas species has been revised and updated several times. This study utilized average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) cutoff values of 95 and 70 %, respectively, to re-identify the species of strains deposited in GenBank as P. aeruginosa , P. fluorescens and P. putida . Of the 264 deposited P. aeruginosa strains, 259 were correctly identified as P. aeruginosa , but the remaining five were not. All 28 deposited P. fluorescens strains had been incorrectly identified as P. fluorescens . Four of these strains were re-identified, including two as P. kilonensis and one each as P. aeruginosa and P. brassicacearum , but the remaining 24 could not be re-identified. Similarly, all 35 deposited P. putida strains had been incorrectly identified as P. putida . Nineteen of these strains were re-identified, including 12 as P. alloputida , four as P. asiatica and one each as P. juntendi , P. monteilii and P. mosselii . These results strongly suggest that Pseudomonas bacteria should be identified using ANI and dDDH analyses based on whole genome sequencing when Pseudomonas species are initially deposited in GenBank/DDBJ/EMBL databases.


2020 ◽  
Author(s):  
Miguel Pinto ◽  
Vítor Borges ◽  
Joana Isidro ◽  
João Carlos Rodrigues ◽  
Luís Vieira ◽  
...  

Neisseria gonorrhoeae , the bacterium responsible for the sexually transmitted disease gonorrhoea, has shown an extraordinary ability to develop antimicrobial resistance (AMR) to multiple classes of antimicrobials. With no available vaccine, managing N. gonorrhoeae infections demands effective preventive measures, antibiotic treatment and epidemiological surveillance. The latter two are progressively being supported by the generation of whole-genome sequencing (WGS) data on behalf of national and international surveillance programmes. In this context, this study aims to perform N. gonorrhoeae clustering into genogroups based on WGS data, for enhanced prospective laboratory surveillance. Particularly, it aims to identify the major circulating WGS-genogroups in Europe and to establish a relationship between these and AMR. Ultimately, it enriches public databases by contributing with WGS data from Portuguese isolates spanning 15 years of surveillance. A total of 3791 carefully inspected N. gonorrhoeae genomes from isolates collected across Europe were analysed using a gene-by-gene approach (i.e. using cgMLST). Analysis of cluster composition and stability allowed the classification of isolates into a two-step hierarchical genogroup level determined by two allelic distance thresholds revealing cluster stability. Genogroup clustering in general agreed with available N. gonorrhoeae typing methods [i.e. MLST (multilocus sequence typing), NG-MAST ( N. gonorrhoeae multi-antigen sequence typing) and PubMLST core-genome groups], highlighting the predominant genogroups circulating in Europe, and revealed that the vast majority of the genogroups present a dominant AMR profile. Additionally, a non-static gene-by-gene approach combined with a more discriminatory threshold for potential epidemiological linkage enabled us to match data with previous reports on outbreaks or transmission chains. In conclusion, this genogroup assignment allows a comprehensive analysis of N. gonorrhoeae genetic diversity and the identification of the WGS-based genogroups circulating in Europe, while facilitating the assessment (and continuous monitoring) of their frequency, geographical dispersion and potential association with specific AMR signatures. This strategy may benefit public-health actions through the prioritization of genogroups to be controlled, the identification of emerging resistance carriage, and the potential facilitation of data sharing and communication.


2015 ◽  
Vol 53 (8) ◽  
pp. 2402-2403 ◽  
Author(s):  
Claire Jenkins

The accessibility of whole-genome sequencing (WGS) presents the opportunity for national reference laboratories to provide a state-of-the-art public health surveillance service. The replacement of traditional serology-based typing ofEscherichia coliby WGS is supported by user-friendly, freely available data analysis Web tools. Anarticle in this issueof theJournal of Clinical Microbiology(K. G. Joensen, A. M. M. Tetzschner, A. Iguchi, F. M. Aarestrup, and F. Scheutz, J Clin Microbiol, 53:2410–2426, 2015,http://dx.doi.org/10.1128/JCM.00008-15) describes SerotypeFinder, an essential guide to serotypingE. coliin the 21st century.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Nicol Janecko ◽  
Samuel J. Bloomfield ◽  
Raphaëlle Palau ◽  
Alison E. Mather

Consumption of prawns as a protein source has been on the rise worldwide with seafood identified as the predominant attributable source of human vibriosis. However, surveillance of non-cholera Vibrio is limited both in public health and in food. Using a population- and market share-weighted study design, 211 prawn samples were collected and cultured for Vibrio spp. Contamination was detected in 46 % of samples, and multiple diverse Vibrio isolates were obtained from 34 % of positive samples. Whole genome sequencing (WGS) and phylogenetic analysis illustrated a comprehensive view of Vibrio species diversity in prawns available at retail, with no known pathogenicity markers identified in Vibrio parahaemolyticus and V. cholerae . Antimicrobial resistance genes were found in 77 % of isolates, and 12 % carried genes conferring resistance to three or more drug classes. Resistance genes were found predominantly in V. parahaemolyticus , though multiple resistance genes were also identified in V. cholerae and V. vulnificus . This study highlights the large diversity in Vibrio derived from prawns at retail, even within a single sample. Although there was little evidence in this study that prawns are a major source of vibriosis in the UK, surveillance of non-cholera Vibrio is very limited. This study illustrates the value of expanding WGS surveillance efforts of non-cholera Vibrios in the food chain to identify critical control points for food safety through the production system and to determine the full extent of the public health impact.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Nikki W. Shariat ◽  
Ruth E. Timme ◽  
Abigail T. Walters

Salmonella enterica subspecies arizonae is frequently associated with animal reservoirs, particularly reptiles, and can cause illness in some mammals, including humans. Using whole-genome sequencing data, core genome phylogenetic analyses were performed using 112  S . enterica subsp. arizonae isolates, representing 46 of 102 described serovars. Nearly one-third of these are polyphyletic, including two serovars that appear in four and five distinct evolutionary lineages. Subspecies arizonae has a monophasic H antigen. Among the 46 serovars investigated, only 8 phase 1 H antigens were identified, demonstrating high conservation for this antigen. Prophages and plasmids were found throughout this subspecies, including five novel prophages. Polyphyly was also reflected in prophage content, although some clade-specific enrichment for some phages was observed. IncFII(S) was the most frequent plasmid replicon identified and was found in a quarter of S. enterica subsp. arizonae genomes. Salmonella pathogenicity islands (SPIs) 1 and 2 are present across all Salmonella , including this subspecies, although effectors sipA, sptP and arvA in SPI-1 and sseG and ssaI in SPI-2 appear to be lost in this lineage. SPI-20, encoding a type VI secretion system, is exclusive to this subspecies and is well maintained in all genomes sampled. A number of fimbral operons were identified, including the sas operon that appears to be a synapomorphy for this subspecies, while others exhibited more clade-specific patterns. This work reveals evolutionary patterns in S. enterica subsp. arizonae that make this subspecies a unique lineage within this very diverse species.


2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Mpinda Edoaurd Tshipamba ◽  
Kazeem Adekunle Alayande ◽  
Ngoma Lubanza ◽  
Mulunda Mwanza

ABSTRACT Campylobacter fetus subsp. fetus is an opportunistic human pathogen that is frequently identified as a cause of intestinal infections as well as bloodstream infections. This bacterium is well known to cause spontaneous abortions in sheep and cows. The strain reported in this study was isolated from a preputial wash sample from a bull in South Africa.


Sign in / Sign up

Export Citation Format

Share Document