scholarly journals SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients

2020 ◽  
Vol 101 (11) ◽  
pp. 1156-1169 ◽  
Author(s):  
William B. Klimstra ◽  
Natasha L. Tilston-Lunel ◽  
Sham Nambulli ◽  
James Boslett ◽  
Cynthia M. McMillen ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), emerged at the end of 2019 and by mid-June 2020 the virus had spread to at least 215 countries, caused more than 8 000 000 confirmed infections and over 450 000 deaths, and overwhelmed healthcare systems worldwide. Like severe acute respiratory syndrome coronavirus (SARS-CoV), which emerged in 2002 and caused a similar disease, SARS-CoV-2 is a betacoronavirus. Both viruses use human angiotensin-converting enzyme 2 (hACE2) as a receptor to enter cells. However, the SARS-CoV-2 spike (S) glycoprotein has a novel insertion that generates a putative furin cleavage signal and this has been postulated to expand the host range. Two low-passage (P) strains of SARS-CoV-2 (Wash1 : P4 and Munich : P1) were cultured twice in Vero E6 cells and characterized virologically. Sanger and MinION sequencing demonstrated significant deletions in the furin cleavage signal of Wash1 : P6 and minor variants in the Munich : P3 strain. Cleavage of the S glycoprotein in SARS-CoV-2-infected Vero E6 cell lysates was inefficient even when an intact furin cleavage signal was present. Indirect immunofluorescence demonstrated that the S glycoprotein reached the cell surface. Since the S protein is a major antigenic target for the development of neutralizing antibodies, we investigated the development of neutralizing antibody titres in serial serum samples obtained from COVID-19 human patients. These were comparable regardless of the presence of an intact or deleted furin cleavage signal. These studies illustrate the need to characterize virus stocks meticulously prior to performing either in vitro or in vivo pathogenesis studies.

Author(s):  
William B. Klimstra ◽  
Natasha L. Tilston-Lunel ◽  
Sham Nambulli ◽  
James Boslett ◽  
Cynthia M. McMillen ◽  
...  

AbstractSARS-CoV-2, the causative agent of COVID-19, emerged at the end of 2019 and by mid-June 2020, the virus has spread to at least 215 countries, caused more than 8,000,000 confirmed infections and over 450,000 deaths, and overwhelmed healthcare systems worldwide. Like SARS-CoV, which emerged in 2002 and caused a similar disease, SARS-CoV-2 is a betacoronavirus. Both viruses use human angiotensin-converting enzyme 2 (hACE2) as a receptor to enter cells. However, the SARS-CoV-2 spike (S) glycoprotein has a novel insertion that generates a putative furin cleavage signal and this has been postulated to expand the host range. Two low passage (P) strains of SARS-CoV-2 (Wash1: P4 and Munich: P1) were cultured twice in Vero-E6 cells and characterized virologically. Sanger and MinION sequencing demonstrated significant deletions in the furin cleavage signal of Wash1: P6 and minor variants in the Munich: P3 strain. Cleavage of the S glycoprotein in SARS-CoV-2-infected Vero-E6 cell lysates was inefficient even when an intact furin cleavage signal was present. Indirect immunofluorescence demonstrated the S glycoprotein reached the cell surface. Since the S protein is a major antigenic target for the development of neutralizing antibodies we investigated the development of neutralizing antibody titers in serial serum samples obtained from COVID-19 human patients. These were comparable regardless of the presence of an intact or deleted furin cleavage signal. These studies illustrate the need to characterize virus stocks meticulously prior to performing either in vitro or in vivo pathogenesis studies.


2004 ◽  
Vol 85 (10) ◽  
pp. 3109-3113 ◽  
Author(s):  
Hai Pang ◽  
Yinggang Liu ◽  
Xueqing Han ◽  
Yanhui Xu ◽  
Fuguo Jiang ◽  
...  

Some of the structural proteins of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) carry major epitopes involved in virus neutralization and are essential for the induction of protective humoral responses and the development of an effective vaccine. Rabbit antisera were prepared using full-length N and M proteins and eight expressed fragments covering the S protein. Antisera to S and M proteins were found to have different neutralizing titres towards SARS-CoV infection in vivo, ranging from 1 : 35 to 1 : 128. Antiserum to the N protein did not contain neutralizing antibodies. Epitopes inducing protective humoral responses to virus infection were located mainly in the M protein and a region spanning residues 13–877 of the S protein. The neutralizing ability of antisera directed against the expressed structural proteins was greater than that of convalescent patient antisera, confirming that, as immunogens, the former induce strong, SARS-CoV-specific neutralizing antibody responses. The in vitro neutralization assay has important implications for the design of an effective, protein-based vaccine preventing SARS-CoV infection.


2021 ◽  
Author(s):  
Fatima Amanat ◽  
Shirin Strohmeier ◽  
Wen-Hsin Lee ◽  
Sandhya Bangaru ◽  
Andrew B Ward ◽  
...  

After first emerging in December 2019 in China, severe acute respiratory syndrome 2 (SARS-CoV-2) has since caused a pandemic leading to millions of infections and deaths worldwide. Vaccines have been developed and authorized but supply of these vaccines is currently limited. With new variants of the virus now emerging and spreading globally, it is essential to develop therapeutics that are broadly protective and bind conserved epitopes in the receptor binding domain (RBD) or the whole spike of SARS-CoV-2. In this study, we have generated mouse monoclonal antibodies (mAbs) against different epitopes on the RBD and assessed binding and neutralization against authentic SARS-CoV-2. We have demonstrated that antibodies with neutralizing activity, but not non-neutralizing antibodies, lower viral titers in the lungs when administered in a prophylactic setting in vivo in a mouse challenge model. In addition, most of the mAbs cross-neutralize the B.1.351 as well as the B.1.1.7 variants in vitro.


2002 ◽  
Vol 44 (3) ◽  
pp. 151-154 ◽  
Author(s):  
Juliano BORDIGNON ◽  
Fabiano COMIN ◽  
Sílvia Córdoba P. FERREIRA ◽  
Graciane M. M. CAPORALE ◽  
José Hermênio Cavalcante LIMA FILHO ◽  
...  

The determination of the rabies neutralizing antibody (VNA) response after immunization against rabies is an acceptable index of the efficacy of a vaccine and a successful treatment. Several tests have been developed in attempt to improve the assessment of VNA, from mice inoculation to cell-culture fluorescence inhibition tests. All of them, however, present special difficulties in terms of reading or accuracy. The present study describes a neutralization test performed in cell-culture appraised by flow cytometry (FC). Serial dilutions of the serum samples were mixed in vitro with rabies virus before the addition of BHK-21 cells. After 24h-incubation, cells were released by trypsin treatment, fixed and permeabilized with a p-formaldehyde solution and stained with a rabies virus nucleocapsid protein-specific antibody conjugate. The percentage of virus infection inhibition caused by specific antibodies present in the serum were evaluated in a Beckton & Dickinson FACSCalibur® flow cytometer. A correlation curve between the IU/ml content and the percentage of infective inhibition was built with a reference serum and the VNA titers of serum samples were obtained by extrapolation. Titers obtained by FC and standard test showed an effective pairing results (p < 0.01), with a correlation coefficient (r) = 0.7. These results permit to envisage the FC as a suitable technique to evaluate VNA in sera from immunized animals and likely in human serum samples. Nevertheless, new studies comparing FC to gold-standard techniques are required for determining the FC values of Sensibility and Specificity .


2020 ◽  
Author(s):  
Isabelle Desombere ◽  
Freya Van Houtte ◽  
Ali Farhoudi ◽  
Lieven Verhoye ◽  
Caroline Buysschaert ◽  
...  

Abstract Hepatitis C virus (HCV) is highly variable and transmits through infected blood to establish a chronic liver infection in the majority of patients. Our knowledge of the infectivity of clinical HCV strains is hampered by the lack of in vitro cell culture systems that support efficient viral replication. We previously reported that laboratory strains of HCV associated with non-permissive B cells could trans-infect hepatocytes and thereby evade host neutralizing antibody responses, suggesting a role for B cells in HCV transmission. To evaluate this hypothesis, we assessed the ability of B cells and sera from recent (<2 years) or chronic (≥ 2 years) infections to infect humanized liver chimeric mice. HCV was efficiently transmitted by B cells from chronically infected patients whereas the sera were non-infectious. In contrast, we noted that B cells from recently infected patients failed to transmit HCV to the mice, whereas all serum samples were infectious. Only patients with circulating anti-glycoprotein antibodies harbored genomic HCV-RNA in B cells. Taken together, our studies provide direct in vivo evidence for HCV transmission by B cells and these findings may have clinical implications for prophylactic and therapeutic antibody-based vaccine design.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 593 ◽  
Author(s):  
Javier Ruiz-de-la-Herrán ◽  
Jaime Tomé-Amat ◽  
Rodrigo Lázaro-Gorines ◽  
José G. Gavilanes ◽  
Javier Lacadena

Immunotoxins are chimeric molecules that combine the specificity of an antibody to recognize and bind tumor antigens with the potency of the enzymatic activity of a toxin, thus, promoting the death of target cells. Among them, RNases-based immunotoxins have arisen as promising antitumor therapeutic agents. In this work, we describe the production and purification of two new immunoconjugates, based on RNase T1 and the fungal ribotoxin α-sarcin, with optimized properties for tumor treatment due to the inclusion of a furin cleavage site. Circular dichroism spectroscopy, ribonucleolytic activity studies, flow cytometry, fluorescence microscopy, and cell viability assays were carried out for structural and in vitro functional characterization. Our results confirm the enhanced antitumor efficiency showed by these furin-immunotoxin variants as a result of an improved release of their toxic domain to the cytosol, favoring the accessibility of both ribonucleases to their substrates. Overall, these results represent a step forward in the design of immunotoxins with optimized properties for potential therapeutic application in vivo.


1950 ◽  
Vol 91 (1) ◽  
pp. 65-86 ◽  
Author(s):  
Duard L. Walker ◽  
Frank L. Horsfall

There is an exponential linear relationship between the quantity of influenza virus neutralized and the quantity of immune serum employed in in ovo neutralization. The slope of the neutralization line is extremely steep. The concentration of neutralizing antibody can be measured with considerable precision in ovo if the constant virus-varying serum technique is utilized. The amounts of hemagglutination-inhibiting and neutralizing antibodies which are absorbed by a given quantity of influenza virus (PR8) were found to be predictable and the degree of reactivity of these two antibodies was shown to be directly related to the extent of immunization. It was demonstrated that there are marked discrepancies in correlation between antibody titers obtained by in vitro hemagglutination-inhibition and in vivo neutralization techniques and that neutralizing antibody is preferentially absorbed by a given quantity of virus. Inasmuch as the results were found not to be attributable to peculiarities of the techniques employed, it appears that the antibodies measured by hemagglutination-inhibition in vitro and by neutralization in vivo are not identical.


2009 ◽  
Vol 83 (11) ◽  
pp. 5567-5573 ◽  
Author(s):  
Susan L. Pichla-Gollon ◽  
Shih-Wen Lin ◽  
Scott E. Hensley ◽  
Marcio O. Lasaro ◽  
Larissa Herkenhoff-Haut ◽  
...  

ABSTRACT A major obstacle to the use of adenovirus vectors derived from common human serotypes, such as human adenovirus 5 (AdHu5), is the high prevalence of virus-neutralizing antibodies in the human population. We previously constructed a variant of chimpanzee adenovirus 68 (AdC68) that maintained the fundamental properties of the carrier but was serologically distinct from AdC68 and resisted neutralization by AdC68 antibodies. In the present study, we tested whether this modified vector, termed AdCDQ, could induce transgene product-specific CD8+ T cells in mice with preexisting neutralizing antibody to wild-type AdC68. Contrary to our expectation, the data show conclusively that antibodies that fail to neutralize the AdCDQ mutant vector in vitro nevertheless impair the vector's capacity to transduce cells and to stimulate a transgene product-specific CD8+ T-cell response in vivo. The results thus suggest that in vitro neutralization assays may not reliably predict the effects of virus-specific antibodies on adenovirus vectors in vivo.


2010 ◽  
Vol 84 (17) ◽  
pp. 8617-8625 ◽  
Author(s):  
Tibor Farkas ◽  
Robert W. Cross ◽  
Edwin Hargitt ◽  
Nicholas W. Lerche ◽  
Ardythe L. Morrow ◽  
...  

ABSTRACT Recently, we reported the discovery and characterization of Tulane virus (TV), a novel rhesus calicivirus (CV) (T. Farkas, K. Sestak, C. Wei, and X. Jiang, J. Virol. 82:5408-5416, 2008). TV grows well in tissue culture, and it represents a new genus within Caliciviridae, with the proposed name of Recovirus. We also reported a high prevalence of CV antibodies in macaques of the Tulane National Primate Research Center (TNPRC) colony, including anti-norovirus (NoV), anti-sapovirus (SaV), and anti-TV (T. Farkas, J. Dufour, X. Jiang, and K. Sestak, J. Gen. Virol. 91:734-738, 2010). To broaden our knowledge about CV infections in captive nonhuman primates (NHP), 500 rhesus macaque stool samples collected from breeding colony TNPRC macaques were tested for CVs. Fifty-seven (11%) samples contained recovirus isolates. In addition, one NoV was detected. Phylogenetic analysis classified the recovirus isolates into two genogroups and at least four genetic types. The rhesus NoV isolate was closely related to GII human NoVs. TV-neutralizing antibodies were detected in 88% of serum samples obtained from primate caretakers. Binding and plaque reduction assays revealed the involvement of type A and B histo-blood group antigens (HBGA) in TV infection. Taken together, these findings indicate the zoonotic potential of primate CVs. The discovery of a genetically diverse and prevalent group of primate CVs and remarkable similarities between rhesus enteric CVs and human NoVs opens new possibilities for research involving in vitro and in vivo models of human NoV gastroenteritis.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Simon G. P. Funnell ◽  
Babak Afrough ◽  
John James Baczenas ◽  
Neil Berry ◽  
Kevin R. Bewley ◽  
...  

AbstractAn array of SARS-CoV-2 virus variants have been isolated, propagated and used in in vitro assays, in vivo animal studies and human clinical trials. Observations of working stocks of SARS-CoV-2 suggest that sequential propagation in Vero cells leads to critical changes in the region of the furin cleavage site, which significantly reduce the value of the working stock for critical research studies. Serially propagating SARS-CoV-2 in Vero E6 cells leads to rapid increases in genetic variants while propagation in other cell lines (e.g. Vero/hSLAM) appears to mitigate this risk thereby improving the overall genetic stability of working stocks. From these observations, investigators are urged to monitor genetic variants carefully when propagating SARS-CoV-2 in Vero cells.


Sign in / Sign up

Export Citation Format

Share Document