scholarly journals Characterization of cytotoxic necrotizing factor 1-producing Escherichia coli strains from faeces of healthy macaques

2009 ◽  
Vol 58 (10) ◽  
pp. 1354-1358 ◽  
Author(s):  
Heather R. Martin ◽  
Nancy S. Taylor ◽  
Ellen M. Buckley ◽  
Robert P. Marini ◽  
Mary M. Patterson ◽  
...  

Twenty-five (27 %) of 92 clinically normal macaques were found to have β-haemolytic Escherichia coli isolated from their faeces. Five of six isolates chosen for further characterization had multiple antibiotic resistance and were PCR-positive for cytotoxic necrotizing factor 1 (cnf1) with a demonstrated cytopathic effect in vitro. By repetitive element sequence-based PCR genotyping, genetic similarity was established for selected isolates. We believe this to be the first report of E. coli strains producing CNF1 in non-human primates.

1999 ◽  
Vol 67 (7) ◽  
pp. 3657-3661 ◽  
Author(s):  
Michael D. Island ◽  
Xaioling Cui ◽  
John W. Warren

ABSTRACT We hypothesized that Escherichia coli cytotoxic necrotizing factor 1 (CNF1) might impair migration or proliferation of bladder cells and could potentially interfere with repair of the bladder epithelium. Using experimentally wounded human T24 bladder epithelial cell monolayers as an in vitro model, we found that both the number of T24 cells and the maximum distance they migrated into wounded regions was significantly decreased by bacterial extracts containingE. coli CNF1.


1998 ◽  
Vol 66 (7) ◽  
pp. 3384-3389 ◽  
Author(s):  
Michael D. Island ◽  
Xiaoling Cui ◽  
Betsy Foxman ◽  
Carl F. Marrs ◽  
Walter E. Stamm ◽  
...  

ABSTRACT Approximately one-half of Escherichia coli isolates from patients with cystitis or pyelonephritis produce the pore-forming cytotoxin hemolysin, a molecule with the capacity to lyse erythrocytes and a range of nucleated cell types. A second toxin, cytotoxic necrotizing factor 1 (CNF1), is found in approximately 70% of hemolytic, but rarely in nonhemolytic, isolates. To evaluate the potential interplay of these two toxins, we used epidemiological and molecular biologic techniques to compare the cytotoxicity of hemolytic, CNF1+, and CNF1− cystitis strains toward human T24 bladder epithelial cells in vitro. A total of 29 isolates from two collections of cystitis-associated E. coli were evaluated by using methylene blue staining of bladder monolayers at 1-h intervals after inoculation with each strain. Most (20 of 29) isolates damaged or destroyed the T24 monolayer (less than 50% remaining) within 4 h after inoculation. As a group, CNF1+ isolates from one collection (11 strains) were less cytotoxic at 4 h than the CNF1− strains in that collection (P = 0.009), but this pattern was not observed among isolates from the second collection (18 strains). To directly evaluate the role of CNF1 in cytotoxicity of hemolytic E. coli without the variables present in multiple clinical isolates, we constructed mutants defective in production of CNF1. Compared to the CNF1+ parental isolates, no change in cytotoxicity was detected in thesecnf1 mutants. Our results indicate that CNF1 does not have a detectable effect on the ability of hemolytic E. coli to damage human bladder cell monolayers in vitro.


2006 ◽  
Vol 50 (2) ◽  
pp. 649-653 ◽  
Author(s):  
S. M. Soto ◽  
M. T. Jimenez de Anta ◽  
J. Vila

ABSTRACT Escherichia coli is the most common microorganism causing urinary tract infections. Quinolone-resistant E. coli strains have fewer virulence factors than quinolone-susceptible strains. Several urovirulence genes are located in pathogenicity islands (PAIs). We investigated the capacity of quinolones to induce loss of virulence factors such as hemolysin, cytotoxic necrotizing factor 1, P fimbriae, and autotransporter Sat included in PAIs in three uropathogenic E. coli strains. In a multistep selection, all strains lost hemolytic capacity at between 1 and 4 passages when they were incubated with subinhibitory concentrations of ciprofloxacin, showing a partial or total loss of the PAI containing the hly (hemolysin) and cnf-1 (cytotoxic necrotizing factor 1) genes. RecA− mutants were obtained from the two E. coli strains with partial or total loss of the PAI. The inactivation of the RecA protein affected only the partial loss of the PAI induced by quinolones. No spontaneous loss of PAIs was observed on incubation in the absence of quinolones in either the wild-type or mutant E. coli strains. Quinolones induce partial or total loss of PAIs in vitro in uropathogenic E. coli by SOS-dependent or -independent pathways, respectively.


2011 ◽  
Vol 31 (10) ◽  
pp. 916-921 ◽  
Author(s):  
Terezinha Knöbl ◽  
André B.S Saidenberg ◽  
Andrea M Moreno ◽  
Tânia A.T Gomes ◽  
Mônica A.M Vieira ◽  
...  

Escherichia coli isolates from 24 sick psittacine birds were serogrouped and investigated for the presence of genes encoding the following virulence factors: attaching and effacing (eae), enteropathogenic E. coli EAF plasmid (EAF), pili associated with pyelonephritis (pap), S fimbriae (sfa), afimbrial adhesin (afa), capsule K1 (neu), curli (crl, csgA), temperature-sensitive hemagglutinin (tsh), enteroaggregative heat-stable enterotoxin-1 (astA), heat-stable enterotoxin -1 heat labile (LT) and heat stable (STa and STb) enterotoxins, Shiga-like toxins (stx1 and stx2), cytotoxic necrotizing factor 1 (cnf1), haemolysin (hly), aerobactin production (iuc) and serum resistance (iss). The results showed that the isolates belonged to 12 serogroups: O7; O15; O21; O23; O54; O64; O76; O84; O88; O128; O152 and O166. The virulence genes found were: crl in all isolates, pap in 10 isolates, iss in seven isolates, csgA in five isolates, iuc and tsh in three isolates and eae in two isolates. The combination of virulence genes revealed 11 different genotypic patterns. All strains were negative for genes encoding for EAF, EAEC, K1, sfa, afa, hly, cnf, LT, STa, STb, stx1 and stx2. Our findings showed that some E. coli isolated from psittacine birds present the same virulence factors as avian pathogenic E. coli (APEC), uropathogenic E. coli (UPEC) and Enteropathogenic E. coli (EPEC) pathotypes.


2005 ◽  
Vol 389 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Rajesh K. Soni ◽  
Parul Mehra ◽  
Gauranga Mukhopadhyay ◽  
Suman Kumar Dhar

In Escherichia coli, DnaC is essential for loading DnaB helicase at oriC (the origin of chromosomal DNA replication). The question arises as to whether this model can be generalized to other species, since many eubacterial species fail to possess dnaC in their genomes. Previously, we have reported the characterization of HpDnaB (Helicobacter pylori DnaB) both in vitro and in vivo. Interestingly, H. pylori does not have a DnaC homologue. Using two different E. coli dnaC (EcdnaC) temperature-sensitive mutant strains, we report here the complementation of EcDnaC function by HpDnaB in vivo. These observations strongly suggest that HpDnaB can bypass EcDnaC activity in vivo.


2015 ◽  
Vol 25 (6) ◽  
pp. 394-402 ◽  
Author(s):  
Taylor L. Fischer ◽  
Robert J. White ◽  
Katherine F.K. Mares ◽  
Devin E. Molnau ◽  
Justin J. Donato

<b><i>Background/Aims:</i></b> We previously identified the Triclo1 fosmid in a functional metagenomic selection for clones that increased triclosan tolerance in <i>Escherichia coli</i>. The active enzyme encoded by Triclo1 is ucFabV. Although ucFabV is homologous to FabV from other organisms, ucFabV contains substitutions at key positions that would predict differences in substrate binding. Therefore, a detailed characterization of ucFabV was conducted to link its biochemical activity to its ability to confer reduced triclosan sensitivity. <b><i>Methods:</i></b> ucFabV and a catalytic mutant were purified and used to reduce crotonoyl-CoA in vitro. The mutant and wild-type enzymes were introduced into <i>E. coli</i>, and their ability to confer triclosan tolerance as well as suppress a temperature-sensitive mutant of FabI were measured. <b><i>Results:</i></b> Purified ucFabV, but not the mutant, reduced crotonoyl-CoA in vitro. The wild-type enzyme confers increased triclosan tolerance when introduced into <i>E. coli</i>, whereas the mutant remained susceptible to triclosan<i>. </i>Additionally, wild-type ucFabV, but not the mutant, functionally replaced FabI within living cells. <b><i>Conclusion:</i></b> ucFabV confers increased tolerance through its function as an enoyl-ACP reductase. Furthermore, ucFabV is capable of restoring viability in the presence of compromised FabI, suggesting ucFabV is likely facilitating an alternate step within fatty acid synthesis, bypassing FabI inhibition.


Genetics ◽  
1979 ◽  
Vol 92 (4) ◽  
pp. 1041-1059
Author(s):  
Joan M Henson ◽  
Herman Chu ◽  
Carleen A Irwin ◽  
James R Walker

ABSTRACT Escherichia coli mutants with temperature-sensitive (ts) mutations in dnaX and dnaY genes have been isolated. Based on transduction by phage PI, dnaX and Y have been mapped at minutes 10.4-10.5 and 12.1, respectively, in the sequence dnaX purE dnaY. Both dnaXts36 and YtslO are recessive to wild-type alleles present on episomes. F13 carries both dnaX  + and Y  +; the shorter F210 carries dnaY  +, but not X  +. Lambda transducing phages that carry dnaX  + or Y  + have been isolated, and hybrid plasmids of Col E1 and E. coli DNA from the CLARKE and CARBON (1976) collection also carry portions of the dnaX purE dnaY region. Results obtained with the λ transducing phages and the hybrid plasmids suggest that dnaX is a different gene from the previously characterized dnaZ gene, which is also near minute 10.5.—The dnaXts36 mutant, after a shift to 42°, stopped DNA synthesis gradually, and the total amount of DNA increased two-fold. When this mutant was shifted to M°, the rate of DNA synthesis dropped immediately and the final increment of DNA was only 10% of the initial amount. Replicative DNA synthesis in toluene-treated cells was completely inhibited at 42° and was partially in-hibited even at 30°.—When the dnaYtslO mutant was shifted to 42°, DNA synthesis gradually stopped, and the amount of DNA increased 3.6-fold. At 44°, residual DNA synthesis amounted to a two-fold increase. Replicative DNA synthesis in vitro in toluene-treated cells was inactivated after 20 minutes at 42° or by "preincubation" of cells at 42° before toluene treatment.— The dnaX and dnaY products probably function in polymerization of DNA, although participation also in initiation cannot be excluded.


1992 ◽  
Vol 287 (2) ◽  
pp. 573-578 ◽  
Author(s):  
M Ishikawa ◽  
T Kubo ◽  
S Natori

A protein with a molecular mass of 8 kDa was found to be synthesized specifically when the fat-body from injured Sarcophaga peregrina larvae was cultured in vitro. This protein was purified from the haemolymph of the injured larvae to near-homogeneity. Partial amino acid sequencing revealed that this protein is a diptericin homologue. It showed bactericidal activity on growing, but not resting Escherichia coli cells. E. coli cells become elongated on treatment with this protein.


2000 ◽  
Vol 68 (2) ◽  
pp. 839-847 ◽  
Author(s):  
S. Fournout ◽  
C. M. Dozois ◽  
M. Odin ◽  
C. Desautels ◽  
S. Pérès ◽  
...  

ABSTRACT Some Escherichia coli strains isolated from intestinal or extraintestinal infections in pigs produce cytotoxic necrotizing factor 1 (CNF1). In order to analyze the role of CNF1 in the pathogenesis of porcine colibacillosis, newborn colostrum-deprived germfree piglets were orally inoculated with a wild-type CNF1-producing strain (M623) or with an isogenic cnf1 mutant (M623ΔCNF1). The two isogenic strains induced a high mortality with similar lung and serosal inflammatory lesions, indicating that both strains were pathogenic in these piglets. Bacterial counts in various organs of inoculated piglets revealed an intestinal predisposition of M623 and M623ΔCNF1 strains for the cecum and colon. Extraintestinal organs (lungs, liver, spleen, and kidney) were also colonized by both strains. Similar colonization of intestinal and extraintestinal tissues in animals inoculated with either strain was observed, except in the ileum, where M623 showed a higher colonization than M623ΔCNF1. Intestinal (ileum and colon), extraintestinal (lung and kidney), and immune (mesenteric lymph nodes and spleen) tissues were sampled at 1 day postinoculation and analyzed for cytokine expression by a reverse transcriptase PCR technique. Inoculation with E. coli M623 induced an enhanced expression of inflammatory cytokines (interleukin-1α [IL-1α], tumor necrosis factor α, and IL-12p40) in the intestinal organs compared to uninoculated piglets or piglets inoculated with nonpathogenic intestinal E. coli 862B, which is also able to colonize the intestinal tract. There was little difference in cytokine transcript levels in the intestinal and extraintestinal organs in piglets inoculated with E. colistrains M623 or M623ΔCNF1, except in the ileum, where IL-1α and IL-8 mRNA levels correlated with bacterial colonization. Expression of regulatory cytokines (gamma interferon and IL-4) was weak in immune tissues from piglets inoculated with M623 or M623ΔCNF1. Taken together, our data indicate that the CNF1-producing strain, M623, is pathogenic and induces inflammatory cytokine expression in germfree, colostrum-deprived piglets. Nevertheless, in this model, the CNF1 toxin does not appear to be a major factor for pathogenicity or cytokine response, as demonstrated by the use of an isogenic cnf1mutant.


2021 ◽  
Vol 9 (11) ◽  
pp. 2374
Author(s):  
Xiangning Bai ◽  
Flemming Scheutz ◽  
Henrik Mellström Dahlgren ◽  
Ingela Hedenström ◽  
Cecilia Jernberg

Shiga toxin (Stx) is the key virulence factor in the Shiga Toxin-Producing Escherichia coli (STEC), which can cause diarrhea and hemorrhagic colitis with potential life-threatening complications. There are two major types of Stx: Stx1 and Stx2. Several Stx1/Stx2 subtypes have been identified in E. coli, varying in sequences, toxicity and host specificity. Here, we report a novel Stx2 subtype (designated Stx2m) from three clinical E. coli strains isolated from diarrheal patients and asymptomatic carriers in Sweden and Denmark. The Stx2m toxin was functional and exhibited cytotoxicity in vitro. The two Swedish Stx2m-producing strains belonged to the same serotype O148:H39 and Multilocus Sequencing Typing (MLST) Sequence Type (ST) 5825, while the Danish strain belonged to the O96:H19 serotype and ST99 type. Whole-genome sequencing (WGS) data analysis revealed that the three Stx2m-producing strains harbored additional virulence genes and the macrolide resistance gene mdf (A). Our findings expand the pool of Stx2 subtypes and highlight the clinical significance of emerging STEC variants. Given the clinical relevance of the Stx2m-producing strains, we propose to include Stx2m in epidemiological surveillance of STEC infections and clinical diagnosis.


Sign in / Sign up

Export Citation Format

Share Document