scholarly journals Isolation and characterization of Streptococcus mutans in heart valve and dental plaque specimens from a patient with infective endocarditis

2006 ◽  
Vol 55 (8) ◽  
pp. 1135-1140 ◽  
Author(s):  
Ryota Nomura ◽  
Kazuhiko Nakano ◽  
Hirotoshi Nemoto ◽  
Kazuyo Fujita ◽  
Satoko Inagaki ◽  
...  

Streptococcus mutans, known to be an aetiologic agent of dental caries, also causes infective endocarditis (IE), although a comparison of isolates from the oral cavity and infected heart valve of the same patient has not been reported. In the present study, infected heart valve and dental plaque samples from a patient with IE were analysed. Broad-range PCR with DNA sequencing revealed that 50 clones from the dental plaque isolates were composed of oral streptococci and periodontopathic bacteria, whereas only Streptococcus mutans was detected in 50 clones from the heart valve. Eighteen strains of Streptococcus mutans were isolated from dental plaque and seven from the heart valve, and the biochemical properties of each were in accordance with those of Streptococcus mutans. DNA fingerprinting analysis revealed that all the oral isolates of Streptococcus mutans had similar patterns, which were different from those of the isolates from the infected heart valve. Western blotting using glucosyltransferase (GTF)-specific antiserum showed that the seven strains from the heart valve lacked the three types of intact GTF. In addition, the sucrose-dependent adhesion rates of these isolates were significantly lower than those of the oral isolates (P<0.001). Furthermore, the isolates from the heart valve were less susceptible to erythromycin and kanamycin. These results indicate that the properties of the Streptococcus mutans strains isolated from the infected valve were different from those of typical oral strains, which may be related to the effects of IE.

2019 ◽  
Vol 14 (5) ◽  
pp. 1934578X1984933
Author(s):  
Joshua L. Mieher ◽  
Norbert Schormann ◽  
Manisha Patel ◽  
Hui Wu ◽  
Champion Deivanayagam

Dental caries characterized by acid damage of tooth enamel is a persistent disease that begins with the formation of biofilms on the tooth surface. The secreted glucosyltransferases enable Streptococcus mutans to synthesize extracellular glucan polymers using ingested starch within the oral cavity, which eventually results in the production of acid, a contributing factor to cariogenesis. In this paper, we report the cloning, expression, purification, crystallization, and preliminary X-ray diffraction characterization of glucosyltransferase B.


2020 ◽  
Vol 202 (12) ◽  
Author(s):  
Delphine Dufour ◽  
Abdelahhad Barbour ◽  
Yuki Chan ◽  
Marcus Cheng ◽  
Taimoor Rahman ◽  
...  

ABSTRACT Bacteriocins are ribosomally synthesized proteinaceous antibacterial peptides. They selectively interfere with the growth of other bacteria. The production and secretion of bacteriocins confer a distinct ecological advantage to the producer in competing against other bacteria that are present in the same ecological niche. Streptococcus mutans, a significant contributor to the development of dental caries, is one of the most prolific producers of bacteriocins, known as mutacins in S. mutans. In this study, we characterized the locus encoding mutacin B-Ny266, a lantibiotic with a broad spectrum of activity. The chromosomal locus is composed of six predicted operon structures encoding proteins involved in regulation, antimicrobial activity, biosynthesis, modification, transport, and immunity. Mutacin B-Ny266 was purified from semisolid cultures, and two inhibitory peptides, LanA and LanA′, were detected. Both peptides were highly modified. Such modifications include dehydration of serine and threonine and the formation of a C-terminal aminovinyl-cysteine (AviCys) ring. While LanA peptide alone is absolutely required for antimicrobial activity, the presence of LanA′ enhanced the activity of LanA, suggesting that B-Ny266 may function as a two-peptide lantibiotic. The activation of lanAA′ expression is most likely controlled by the conserved two-component system NsrRS, which is activated by LanA peptide but not by LanA′. The chromosomal locus encoding mutacin B-Ny266 was not universally conserved in all sequenced S. mutans genomes. Intriguingly, the genes encoding LanAA′ peptides were restricted to the most invasive serotypes of S. mutans. IMPORTANCE Although dental caries is largely preventable, it remains the most common and costly infectious disease worldwide. Caries is initiated by the presence of dental plaque biofilm that contains Streptococcus mutans, a species extensively characterized by its role in caries development and formation. S. mutans deploys an arsenal of strategies to establish itself within the oral cavity. One of them is the production of bacteriocins that confer a competitive advantage by targeting and killing closely related competitors. In this work, we found that mutacin B-Ny266 is a potent lantibiotic that is effective at killing a wide array of oral streptococci, including nearly all S. mutans strains tested. Lantibiotics produced by oral bacteria could represent a promising strategy to target caries pathogens embedded in dental plaque biofilm.


2014 ◽  
Vol 82 (12) ◽  
pp. 5223-5234 ◽  
Author(s):  
Ryota Nomura ◽  
Masatoshi Otsugu ◽  
Shuhei Naka ◽  
Noboru Teramoto ◽  
Ayuchi Kojima ◽  
...  

ABSTRACTStreptococcus mutans, a pathogen responsible for dental caries, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis (IE). Our previous study demonstrated that serotypek-specific bacterial DNA is frequently detected inS. mutans-positive heart valve specimens extirpated from IE patients. However, the reason for this frequent detection remains unknown. In the present study, we analyzed the virulence of IE fromS. mutansstrains, focusing on the characterization of serotypekstrains, most of which are positive for the 120-kDa cell surface collagen-binding protein Cbm and negative for the 190-kDa protein antigen (PA) known as SpaP, P1, antigen I/II, and other designations. Fibrinogen-binding assays were performed with 85 clinical strains classified by Cbm and PA expression levels. The Cbm+/PA−group strains had significantly higher fibrinogen-binding rates than the other groups. Analysis of platelet aggregation revealed that SA31, a Cbm+/PA−strain, induced an increased level of aggregation in the presence of fibrinogen, while negligible aggregation was induced by the Cbm-defective isogenic mutant SA31CBD. A rat IE model with an artificial impairment of the aortic valve created using a catheter showed that extirpated heart valves in the SA31 group displayed a prominent vegetation mass not seen in those in the SA31CBD group. These findings could explain why Cbm+/PA−strains are highly virulent and are related to the development of IE, and the findings could also explain the frequent detection of serotypekDNA inS. mutans-positive heart valve clinical specimens.


Author(s):  
Hadar Ben Zaken ◽  
Reut Kraitman ◽  
Shunit Coppenhagen-Glazer ◽  
Leron Khalifa ◽  
Sivan Alkalay-Oren ◽  
...  

Streptococcus mutans is a key bacterium in dental caries- one of the most prevalent chronic infectious diseases. Conventional treatment both fails to specifically target the pathogenic bacteria and at-tempts to eradicate commensal bacteria as well. Thus, caries remains one of most common and challenging diseases. The use of bacterial viruses as anti-bacterial agents, is gaining interest worldwide. Hardly any phages were described against S. mutans. The objective of this study was to isolate anti-S. mutans phages and to characterize their antimi-crobial properties. Human saliva samples were filtered and screened for potential phages. Standard double-layered agar method was used for isolation. Whole genome sequence analysis and morphology visualization by TEM, were used for anti-S. mutans phage identification. Antibacterial properties were evaluated using clinical strains and ATCC strains of S. mutans in various states. Antibacterial effect was also tested on human cariogenic dentin. One phage against S. mutans was isolated and termed SMHBZ8. This phage showed effective lytic activity in vitro against both planktonic and biofilm S. mutans cultures. Moreover, the phage showed antibacterial effect when used on cariogenic dentin. The isolation and characterization of SMHBZ8 may be the first step in developing a potential phage therapy for dental caries.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 825
Author(s):  
Hadar Ben-Zaken ◽  
Reut Kraitman ◽  
Shunit Coppenhagen-Glazer ◽  
Leron Khalifa ◽  
Sivan Alkalay-Oren ◽  
...  

Streptococcus mutans is a key bacterium in dental caries, one of the most prevalent chronic infectious diseases. Conventional treatment fails to specifically target the pathogenic bacteria, while tending to eradicate commensal bacteria. Thus, caries remains one of the most common and challenging diseases. Phage therapy, which involves the use of bacterial viruses as anti-bacterial agents, has been gaining interest worldwide. Nevertheless, to date, only a few phages have been isolated against S. mutans. In this study, we describe the isolation and characterization of a new S. mutans phage, termed SMHBZ8, from hundreds of human saliva samples that were collected, filtered, and screened. The SMHBZ8 genome was sequenced and analyzed, visualized by TEM, and its antibacterial properties were evaluated in various states. In addition, we tested the lytic efficacy of SMHBZ8 against S. mutans in a human cariogenic dentin model. The isolation and characterization of SMHBZ8 may be the first step towards developing a potential phage therapy for dental caries.


2007 ◽  
Vol 56 (4) ◽  
pp. 551-556 ◽  
Author(s):  
Kazuhiko Nakano ◽  
Hirotoshi Nemoto ◽  
Ryota Nomura ◽  
Hiromi Homma ◽  
Hideo Yoshioka ◽  
...  

The involvement of oral bacteria in the pathogenesis of cardiovascular disease has been studied, with Streptococcus mutans, a pathogen of dental caries, detected in cardiovascular lesions at a high frequency. However, no information is available regarding the properties of S. mutans detected in those lesions. Heart valve specimens were collected from 52 patients and atheromatous plaque specimens from 50 patients, all of whom underwent cardiovascular operations, and dental plaque specimens were taken from 41 of those subjects prior to surgery. Furthermore, saliva samples were taken from 73 sets of healthy mothers (n=73) and their healthy children (n=78). Bacterial DNA was extracted from all specimens, then analysed by PCR with S. mutans-specific and serotype-specific primer sets. The detection rates of S. mutans in the heart valve and atheromatous plaque specimens were 63 and 64 %, respectively. Non-c serotypes were identified with a significantly higher frequency in both cardiovascular and dental plaque samples from the subjects who underwent surgery as compared to serotype c, which was detected in 70–75 % of the samples from the healthy subjects. The serotype distribution in cardiovascular patients was significantly different from that in healthy subjects, suggesting that S. mutans serotype may be related to cardiovascular disease.


2017 ◽  
Vol 49 (2) ◽  
pp. 67
Author(s):  
Aryan Morita ◽  
H. Dedy Kusuma Yulianto ◽  
Susmira Delta Kusdina ◽  
Nunuk Purwanti

Background: Various materials have been used for treating dental caries. Dental caries is a disease that attacks hard tissues of the teeth. The initial phase of caries is a formation of bacterial biofilm, called as dental plaque. Dental restorative materials are expected for preventing secondary caries formation initiated by dental plaque. Initial bacterial adhesion is assumed to be an important stage of dental plaque formation. Bacteria that recognize the receptor for binding to the pellicle on tooth surface are known as initial bacterial colonies. One of the bacteria that plays a role in the early stage of dental plaque formation is Streptococcus mutans (S. mutans). Artificial mouth system (AMS) used in bacterial biofilm research on the oral cavity provides the real condition of oral cavity and continous and intermittent supply of nutrients for bacteria. Purpose: This study aimed to compare the profile of S. mutans bacterial adhesion as the primary etiologic agent for dental caries between using static method and using artificial mouth system, a dinamic. method (AMS). Method: The study was conducted at Faculty of Dentistry and Integrated Research and testing laboratory (LPPT) in Universitas Gadjah Mada from April to August 2015. Composite resin was used as the subject of this research. Twelve composite resins with a diameter of 5 mm and a width of 2 mm were divided into two groups, namely group using static method and group using dynamic method. Static method was performed by submerging the samples into a 100µl suspension of 1.5 x 108 CFU/ml S. mutans and 200µl BHI broth. Meanwhile AMS method was carried out by placing the samples at the AMS tube drained with 20 drops/minute of bacterial suspension and sterile aquadest. After 72 hours, five samples from each group were calculated for their biofilm mass using 1% crystal violet and read by a spectrofotometer with a wavelength of 570 nm. Meanwhile, one sample from each group was taken for its surface image using Scanning Electron Microscope (SEM). Result: The results showed that S. mutans biofilm mass in the group using static method was 0.34, while in the group using AMS method was 0.09. The results of the statistical analysis then showed that there was a significant difference (p=0.02) in the formation of bacterial biofilm mass between those groups. SEM image in the group using static method also showed that the attachment of S. mutans was more numerous and had a longer chain than in the group using AMS method. Conclusion: There is a difference in the profile of S. mutans bacterial adhesion between using AMS method and static method.


2018 ◽  
Vol 773 ◽  
pp. 323-327
Author(s):  
Sroisiri Thaweboon ◽  
Boonyanit Thaweboon

Streptococcus mutans has been reported to be a major causative microorganism for oral biofilm associated with dental caries. Jasmine sambac or Arabian jasmine is a species of jasmine native to tropical and warm temperate regions particularly West and Southeast Asia. The antimicrobial activities of essential oil extracted from the flowers of J. sambac have been shown to attract researchers. Objective: To determine the anti-biofilm formation of S. mutans by mouthwash containing jasmine oil. Materials and Methods: S. mutans KPSK2, the cariogenic strain of oral streptococci was used in the study. The 24-h biofilms of S. mutans were formed on polystyrene plates treated with jasmine mouthwash. The 0.2% chlorhexidine gluconate and phosphate buffer saline mouthwash were used as a positive and negative control respectively. The amount of biofilm was quantified by crystal violet staining and spectrophotometry at an optical density of 595 nm. Results: Jasmine mouthwash showed a significant inhibitory effect on S. mutans biofilm formation by decreasing 43% of biofilm whereas that of chlorhexidine showed 71% reduction. Conclusion: The anti-biofilm formation property of jasmine mouthwash was elucidated; therefore it might be another drug of choice that can be used as an adjunct to control the oral health in the prevention of dental caries.


Sign in / Sign up

Export Citation Format

Share Document