scholarly journals Isolation and Characterization of anti-Streptococcus Mutans Phage as a Possible Treatment Agent for Caries

Author(s):  
Hadar Ben Zaken ◽  
Reut Kraitman ◽  
Shunit Coppenhagen-Glazer ◽  
Leron Khalifa ◽  
Sivan Alkalay-Oren ◽  
...  

Streptococcus mutans is a key bacterium in dental caries- one of the most prevalent chronic infectious diseases. Conventional treatment both fails to specifically target the pathogenic bacteria and at-tempts to eradicate commensal bacteria as well. Thus, caries remains one of most common and challenging diseases. The use of bacterial viruses as anti-bacterial agents, is gaining interest worldwide. Hardly any phages were described against S. mutans. The objective of this study was to isolate anti-S. mutans phages and to characterize their antimi-crobial properties. Human saliva samples were filtered and screened for potential phages. Standard double-layered agar method was used for isolation. Whole genome sequence analysis and morphology visualization by TEM, were used for anti-S. mutans phage identification. Antibacterial properties were evaluated using clinical strains and ATCC strains of S. mutans in various states. Antibacterial effect was also tested on human cariogenic dentin. One phage against S. mutans was isolated and termed SMHBZ8. This phage showed effective lytic activity in vitro against both planktonic and biofilm S. mutans cultures. Moreover, the phage showed antibacterial effect when used on cariogenic dentin. The isolation and characterization of SMHBZ8 may be the first step in developing a potential phage therapy for dental caries.

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 825
Author(s):  
Hadar Ben-Zaken ◽  
Reut Kraitman ◽  
Shunit Coppenhagen-Glazer ◽  
Leron Khalifa ◽  
Sivan Alkalay-Oren ◽  
...  

Streptococcus mutans is a key bacterium in dental caries, one of the most prevalent chronic infectious diseases. Conventional treatment fails to specifically target the pathogenic bacteria, while tending to eradicate commensal bacteria. Thus, caries remains one of the most common and challenging diseases. Phage therapy, which involves the use of bacterial viruses as anti-bacterial agents, has been gaining interest worldwide. Nevertheless, to date, only a few phages have been isolated against S. mutans. In this study, we describe the isolation and characterization of a new S. mutans phage, termed SMHBZ8, from hundreds of human saliva samples that were collected, filtered, and screened. The SMHBZ8 genome was sequenced and analyzed, visualized by TEM, and its antibacterial properties were evaluated in various states. In addition, we tested the lytic efficacy of SMHBZ8 against S. mutans in a human cariogenic dentin model. The isolation and characterization of SMHBZ8 may be the first step towards developing a potential phage therapy for dental caries.


2006 ◽  
Vol 55 (8) ◽  
pp. 1135-1140 ◽  
Author(s):  
Ryota Nomura ◽  
Kazuhiko Nakano ◽  
Hirotoshi Nemoto ◽  
Kazuyo Fujita ◽  
Satoko Inagaki ◽  
...  

Streptococcus mutans, known to be an aetiologic agent of dental caries, also causes infective endocarditis (IE), although a comparison of isolates from the oral cavity and infected heart valve of the same patient has not been reported. In the present study, infected heart valve and dental plaque samples from a patient with IE were analysed. Broad-range PCR with DNA sequencing revealed that 50 clones from the dental plaque isolates were composed of oral streptococci and periodontopathic bacteria, whereas only Streptococcus mutans was detected in 50 clones from the heart valve. Eighteen strains of Streptococcus mutans were isolated from dental plaque and seven from the heart valve, and the biochemical properties of each were in accordance with those of Streptococcus mutans. DNA fingerprinting analysis revealed that all the oral isolates of Streptococcus mutans had similar patterns, which were different from those of the isolates from the infected heart valve. Western blotting using glucosyltransferase (GTF)-specific antiserum showed that the seven strains from the heart valve lacked the three types of intact GTF. In addition, the sucrose-dependent adhesion rates of these isolates were significantly lower than those of the oral isolates (P<0.001). Furthermore, the isolates from the heart valve were less susceptible to erythromycin and kanamycin. These results indicate that the properties of the Streptococcus mutans strains isolated from the infected valve were different from those of typical oral strains, which may be related to the effects of IE.


2000 ◽  
Vol 68 (5) ◽  
pp. 2621-2629 ◽  
Author(s):  
K. Anne Clancy ◽  
Sylvia Pearson ◽  
William H. Bowen ◽  
Robert A. Burne

ABSTRACT Dental caries results from prolonged plaque acidification that leads to the establishment of a cariogenic microflora and demineralization of the tooth. Urease enzymes of oral bacteria hydrolyze urea to ammonia, which can neutralize plaque acids. To begin to examine the relationship between plaque ureolytic activity and the incidence of dental caries, recombinant, ureolytic strains ofStreptococcus mutans were constructed. Specifically, theureABCEFGD operon from Streptococcus salivarius57.I was integrated into the S. mutans chromosome in such a way that the operon was transcribed from a weak, cognate promoter inS. mutans ACUS4 or a stronger promoter in S. mutans ACUS6. Both strains expressed NiCl2-dependent urease activity, but the maximal urease levels in ACUS6 were threefold higher than those in ACUS4. In vitro pH drop experiments demonstrated that the ability of the recombinant S. mutans strains to moderate a decrease in pH during the simultaneous metabolism of glucose and urea increased proportionately with the level of urease activity expressed. Specific-pathogen-free rats that were infected with ACUS6 and fed a cariogenic diet with drinking water containing 25 mM urea and 50 μM NiCl2 had relatively high levels of oral urease activity, as well as dramatic decreases in the prevalence of smooth-surface caries and the severity of sulcal caries, relative to controls. Urease activity appears to influence plaque biochemistry and metabolism in a manner that reduces cariogenicity, suggesting that recombinant, ureolytic bacteria may be useful to promote dental health.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Maryam Hajiahmadi ◽  
Jamshid Faghri ◽  
Zohre Salehi ◽  
Fariba Heidari

Introduction. Early childhood caries is a kind of caries occurring in deciduous teeth. Bacteria are among the main factors. Antibacterial agents such as fluoride are used in both prevention and treatment, but their application in children faces limitations such as fluorosis. Therefore, novel methods of caries prevention among the children are mainly focused on the use of fluoride-free active ingredients. In this comparative study, antibacterial effects of gels containing propolis and aloe vera, fluoride, xylitol, and CPP-ACP were investigated. Methods. This is an in vitro study. By plate well technique, plates containing gels were created in the culture medium of Streptococcus mutans and Lactobacillus, and their antibacterial impacts were evaluated by measuring the inhibition zone after 24, 48, and 72 hours. Then, different concentrations of each gel were evaluated in the same way for the antibacterial properties. For each sample, this process was iterated 3 times, where the average was declared as the final number. The collected data were entered in SPSS 24. Results. In both bacteria, propolis gel and aloe vera had the highest zone of inhibition, followed by fluoride and xylitol in the second and third places, respectively. Different concentrations of gels are significantly different in terms of antimicrobial effect (P value ≤ 0/05). The antimicrobial effect of propolis and aloe vera gel was kept up to the concentration of 1 / 16 . As the bacterial and gel contact time is prolonged, the antibacterial effect of different gels increases, but the difference is not statistically significant (P value = 0.109). CPP-ACP gel had no antimicrobial effect at any concentration. Conclusion. Propolis and aloe vera gel had a greater antimicrobial effect than other gels, where such effect was observed in low concentrations. CPP-ACP gel had no antimicrobial properties.


Author(s):  
SEPTI WARDA ZULFIKAR ◽  
SRI UTAMI ◽  
RATNA FARIDA

Objective: Breadfruit leaf has potent antibacterial properties that could be used to reduce biofilms in the oral cavity. The purpose of this study was toanalyze the antibacterial effect of the breadfruit leaf extract on the growth of Streptococcus mutans in vitro.Methods: S. mutans ATCC 25175 was cultured in a 96-well plate and incubated at 37°C for 20 h (accumulation phase) and 24 h (maturation phase).The breadfruit leaf extract was added at the following concentrations: 5%, 10%, 15%, 20%, 40%, 80%, and 100%. The viability of S. mutans was testedwith the MTT assay at a wavelength of 490 nm. The results were analyzed by one-way analysis of variance.Results: In the accumulation phase, a significant decrease was found in S. mutans viability at different concentrations of the breadfruit leaf extract, butin the maturation phase, a significant decrease was found in the S. mutans viability at the 5% concentration. The other groups decreased significantlycompared with the control group (*p<0.05). The viability of S. mutans after adding the breadfruit leaf extract at all concentrations was lower in theaccumulation phase than that in the maturation phase.Conclusion: In the accumulation phase, breadfruit leaf extract at concentrations of 5%, 10%, 20%, 40%, 80%, and 100% can reduce S. mutans biofilmviability.


2017 ◽  
Vol 1 (1) ◽  
pp. 74-84
Author(s):  
Ahmad Riduan ◽  
Rainiyati Rainiyati ◽  
Yulia Alia

Every plant rhizospheres in any ecosystem there are various living microorganisms including Arbuscular Mycorrhizae Fungi (AMF).  An isolation and characterization is required to investigate the species or type of the AMF. This research was aimed at studying the isolation and characterization of AMF sporulation in soybean rhizospheres in Jambi Province. The results of evaluation on soil samples before trapping showed that there are spores from three genus of AMF twelve types Glomus , two types Acaulospora and one type of Enthrophospora.  Following single spore culture in soybean rhizosphere, 5 spore types were obtained:  Glomus sp-1, Glomus sp-4, Glomus sp-7, Glomus sp-8 Glomus sp-10.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Weili Cai ◽  
Schyler Nunziata ◽  
John Rascoe ◽  
Michael J. Stulberg

AbstractHuanglongbing (HLB) is a worldwide deadly citrus disease caused by the phloem-limited bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) vectored by Asian citrus psyllids. In order to effectively manage this disease, it is crucial to understand the relationship among the bacterial isolates from different geographical locations. Whole genome sequencing approaches will provide more precise molecular characterization of the diversity among populations. Due to the lack of in vitro culture, obtaining the whole genome sequence of CLas is still a challenge, especially for medium to low titer samples. Hundreds of millions of sequencing reads are needed to get good coverage of CLas from an HLB positive citrus sample. In order to overcome this limitation, we present here a new method, Agilent SureSelect XT HS target enrichment, which can specifically enrich CLas from a metagenomic sample while greatly reducing cost and increasing whole genome coverage of the pathogen. In this study, the CLas genome was successfully sequenced with 99.3% genome coverage and over 72X sequencing coverage from low titer tissue samples (equivalent to 28.52 Cq using Li 16 S qPCR). More importantly, this method also effectively captures regions of diversity in the CLas genome, which provides precise molecular characterization of different strains.


Biologics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 164-176
Author(s):  
Abdallah S. Abdelsattar ◽  
Anan Safwat ◽  
Rana Nofal ◽  
Amera Elsayed ◽  
Salsabil Makky ◽  
...  

Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high thermal and pH stability at various conditions that mimic milk manufacturing and supply chain conditions. It also demonstrated a significant reduction in Salmonella concentration in media at various MOIs, with higher bacterial eradication at higher MOI. Moreover, it significantly reduced Salmonella growth (MOI 1) in milk, manifesting a 1000-fold decrease in bacteria concentration following 3 h incubation at 37 °C. The results highlighted the strong ability of ZCSE6 to kill Salmonella and control its growth in milk. Thus, ZCSE6 is recommended as a biocontrol agent in milk to limit bacterial growth and increase the milk shelf-life.


Sign in / Sign up

Export Citation Format

Share Document