scholarly journals Genomic epidemiology of nontoxigenic Corynebacterium diphtheriae from King County, Washington State, USA between July 2018 and May 2019

2020 ◽  
Vol 6 (12) ◽  
Author(s):  
Lingzi Xiaoli ◽  
Eileen Benoliel ◽  
Yanhui Peng ◽  
Janessa Aneke ◽  
Pamela K. Cassiday ◽  
...  

Between July 2018 and May 2019, Corynebacterium diphtheriae was isolated from eight patients with non-respiratory infections, seven of whom experienced homelessness and had stayed at shelters in King County, WA, USA. All isolates were microbiologically identified as nontoxigenic C. diphtheriae biovar mitis. Whole-genome sequencing confirmed that all case isolates were genetically related, associated with sequence type 445 and differing by fewer than 24 single-nucleotide polymorphisms (SNPs). Compared to publicly available C. diphtheriae genomic data, these WA isolates formed a discrete cluster with SNP variation consistent with previously reported outbreaks. Virulence-related gene content variation within the highly related WA cluster isolates was also observed. These results indicated that genome characterization can readily support epidemiology of nontoxigenic C. diphtheriae .

2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Letícia T. Oliveira ◽  
Lívia A. Alves ◽  
Erika N. Harth-Chu ◽  
Ryota Nomura ◽  
Kazuhiko Nakano ◽  
...  

Introduction. Streptococcus mutans , a common species of the oral microbiome, expresses virulence genes promoting cariogenic dental biofilms, persistence in the bloodstream and cardiovascular infections. Gap statement. Virulence gene expression is variable among S. mutans strains and controlled by the transcription regulatory systems VicRK and CovR. Aim. This study investigates polymorphisms in the vicRK and covR loci in S. mutans strains isolated from the oral cavity or from the bloodstream, which were shown to differ in expression of covR, vicRK and downstream genes. Methodology. The transcriptional activities of covR, vicR and vicK were compared by RT-qPCR between blood and oral strains after exposure to human serum. PCR-amplified promoter and/or coding regions of covR and vicRK of 18 strains (11 oral and 7 blood) were sequenced and compared to the reference strain UA159. Results. Serum exposure significantly reduced covR and vicR/K transcript levels in most strains (P<0.05), but reductions were higher in oral than in blood strains. Single-nucleotide polymorphisms (SNPs) were detected in covR regulatory and coding regions, but SNPs affecting the CovR effector domain were only present in two blood strains. Although vicR was highly conserved, vicK showed several SNPs, and SNPs affecting VicK regions important for autokinase activity were found in three blood strains. Conclusions. This study reveals transcriptional and structural diversity in covR and vicR/K, and identifies polymorphisms of functional relevance in blood strains, indicating that covR and vicRK might be important loci for S. mutans adaptation to host selective pressures associated with virulence diversity.


2015 ◽  
Vol 53 (10) ◽  
pp. 3141-3147 ◽  
Author(s):  
M. D. Cairns ◽  
M. D. Preston ◽  
T. D. Lawley ◽  
T. G. Clark ◽  
R. A. Stabler ◽  
...  

Clostridium difficileremains the leading cause of nosocomial diarrhea worldwide, which is largely considered to be due to the production of two potent toxins: TcdA and TcdB. However, PCR ribotype (RT) 017, one of five clonal lineages of human virulentC. difficile, lacks TcdA expression but causes widespread disease. Whole-genome sequencing was applied to 35 isolates from hospitalized patients withC. difficileinfection (CDI) and two environmental ward isolates in London, England. The phylogenetic analysis of single nucleotide polymorphisms (SNPs) revealed a clonal cluster of temporally variable isolates from a single hospital ward at University Hospital Lewisham (UHL) that were distinct from other London hospital isolates.De novoassembled genomes revealed a 49-kbp putative conjugative transposon exclusive to this hospital clonal cluster which would not be revealed by current typing methodologies. This study identified three sublineages ofC. difficileRT017 that are circulating in London. Similar to the notorious RT027 lineage, which has caused global outbreaks of CDI since 2001, the lineage of toxin-defective RT017 strains appears to be continually evolving. By utilization of WGS technologies to identify SNPs and the evolution of clonal strains, the transmission of outbreaks caused by near-identical isolates can be retraced and identified.


2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Arnold Bainomugisa ◽  
Ella M. Meumann ◽  
Giri Shan Rajahram ◽  
Rick Twee-Hee Ong ◽  
Lachlan Coin ◽  
...  

Tuberculosis is a leading public health priority in eastern Malaysia. Knowledge of the genomic epidemiology of tuberculosis can help tailor public health interventions. Our aims were to determine tuberculosis genomic epidemiology and characterize resistance mutations in the ethnically diverse city of Kota Kinabalu, Sabah, located at the nexus of Malaysia, Indonesia, Philippines and Brunei. We used an archive of prospectively collected Mycobacterium tuberculosis samples paired with epidemiological data. We collected sputum and demographic data from consecutive consenting outpatients with pulmonary tuberculosis at the largest tuberculosis clinic from 2012 to 2014, and selected samples from tuberculosis inpatients from the tertiary referral centre during 2012–2014 and 2016–2017. Two hundred and eight M . tuberculosis sequences were available for analysis, representing 8 % of cases notified during the study periods. Whole-genome phylogenetic analysis demonstrated that most strains were lineage 1 (195/208, 93.8 %), with the remainder being lineages 2 (8/208, 3.8 %) or 4 (5/208, 2.4 %). Lineages or sub-lineages were not associated with patient ethnicity. The lineage 1 strains were diverse, with sub-lineage 1.2.1 being dominant (192, 98 %). Lineage 1.2.1.3 isolates were geographically most widely distributed. The greatest diversity occurred in a border town sub-district. The time to the most recent common ancestor for the three major lineage 1.2.1 clades was estimated to be the year 1966 (95 % HPD 1948–1976). An association was found between failure of culture conversion by week 8 of treatment and infection with lineage 2 (4/6, 67 %) compared with lineage 1 strains (4/83, 5 %) (P<0.001), supporting evidence of greater virulence of lineage 2 strains. Eleven potential transmission clusters (SNP difference ≤12) were identified; at least five included people living in different sub-districts. Some linked cases spanned the whole 4-year study period. One cluster involved a multidrug-resistant tuberculosis strain matching a drug-susceptible strain from 3 years earlier. Drug resistance mutations were uncommon, but revealed one phenotype–genotype mismatch in a genotypically multidrug-resistant isolate, and rare nonsense mutations within the katG gene in two isolates. Consistent with the regionally mobile population, M. tuberculosis strains in Kota Kinabalu were diverse, although several lineage 1 strains dominated and were locally well established. Transmission clusters – uncommonly identified, likely attributable to incomplete sampling – showed clustering occurring across the community, not confined to households or sub-districts. The findings indicate that public health priorities should include active case finding and early institution of tuberculosis management in mobile populations, while there is a need to upscale effective contact investigation beyond households to include other contacts within social networks.


Author(s):  
Kathryn A. Bernard ◽  
Tamara Burdz ◽  
Ana Luisa Pacheco ◽  
Deborah Wiebe ◽  
Anne-Marie Bernier

Corynebacterium diphtheriae , Corynebacterium belfantii , Corynebacterium rouxii , Corynebacterium ulcerans , Corynebacterium pseudotuberculosis and Corynebacterium silvaticum are the only taxa from among ~121 Corynebacterium species deemed potentially able to harbour diphtheria tox genes. Subsequently tox-gene bearing species may potentially produce diphtheria toxin, which is linked to fatal respiratory distress if a pharyngeal pseudomembrane is formed or toxaemia develops in those unimmunized or under-immunized. Detection of diphtheria toxin-producing species may also invoke a public health response and contact tracing. Recovery of such species from the respiratory tract or other contaminated sources such as non-healing ulcerative wounds are expedited by use of differential and selective media such as modified Tinsdale medium (MTM). This medium is supplemented with potassium tellurite, which supresses most normal flora present in contaminated specimens, as well as l-cystine and thiosulphate. Most diphtheria-tox-gene bearing species grow well on MTM, producing black colonies with a black halo around each colony. This is due to an ability to produce cystinase in the presence of tellurite, cystine and thiosulphate, resulting in black tellurium deposits being observed in the agar. Other Corynebacterium species may/may not be able to grow at all in the presence of tellurite but if able to grow, will have small beige or brownish colonies which do not exhibit black halos. We describe here an unusual non-tox-gene-bearing isolate, NML 93-0612T, recovered from a human wrist granuloma, which produced black colonies with black halos on MTM agar but was otherwise distinguishable from Corynebacterium species which can bear tox genes. Distinctive features included its unusual colony morphology on MTM and sheep blood agar, by proteomic, biochemical and chemotaxonomic properties and by molecular methods. Its genome contained 2 680 694 bytes, a G+C content of 60.65 mol% with features consistent with the genus Corynebacterium and so represents a new species for which we propose the name Corynebacterium hindlerae sp. nov.


2020 ◽  
Author(s):  
Gerald Tegha ◽  
Emily J. Ciccone ◽  
Robert Krysiak ◽  
James Kaphatika ◽  
Tarsizio Chikaonda ◽  
...  

Antimicrobial resistance (AMR) is a global threat, including in sub-Saharan Africa. However, little is known about the genetics of resistant bacteria in the region. In Malawi, there is growing concern about increasing rates of antimicrobial resistance to most empirically used antimicrobials. The highly drug resistant Escherichia coli sequence type (ST) 131, which is associated with the extended spectrum β-lactamase blaCTX-M-15 , has been increasing in prevalence globally. Previous data from isolates collected between 2006 and 2013 in southern Malawi have revealed the presence of ST131 and the blaCTX-M-15 gene in the country. We performed whole genome sequencing (WGS) of 58 clinical E. coli isolates at Kamuzu Central Hospital, a tertiary care centre in central Malawi, collected from 2012 to 2018. We used Oxford Nanopore Technologies (ONT) sequencing, which was performed in Malawi. We show that ST131 is observed more often (14.9% increasing to 32.8%) and that the blaCTX-M-15 gene is occurring at a higher frequency (21.3% increasing to 44.8%). Phylogenetics indicates that isolates are highly related between the central and southern geographic regions and confirms that ST131 isolates are contained in a single group. All AMR genes, including blaCTX-M-15 , were widely distributed across sequence types. We also identified an increased number of ST410 isolates, which in this study tend to carry a plasmid-located copy of blaCTX-M-15 gene at a higher frequency than blaCTX-M-15 occurs in ST131. This study confirms the expanding nature of ST131 and the wide distribution of the blaCTX-M-15 gene in Malawi. We also highlight the feasibility of conducting longitudinal genomic epidemiology studies of important bacteria with the sequencing done on site using a nanopore platform that requires minimal infrastructure.


2021 ◽  
Vol 7 (8) ◽  
Author(s):  
Spencer A. Bruce ◽  
Yen-Hua Huang ◽  
Pauline L. Kamath ◽  
Henriette van Heerden ◽  
Wendy C. Turner

Bacillus anthracis, the causative agent of anthrax disease, is a worldwide threat to livestock, wildlife and public health. While analyses of genetic data from across the globe have increased our understanding of this bacterium’s population genomic structure, the influence of selective pressures on this successful pathogen is not well understood. In this study, we investigate the effects of antimicrobial resistance, phage diversity, geography and isolation source in shaping population genomic structure. We also identify a suite of candidate genes potentially under selection, driving patterns of diversity across 356 globally extant B. anthracis genomes. We report ten antimicrobial resistance genes and 11 different prophage sequences, resulting in the first large-scale documentation of these genetic anomalies for this pathogen. Results of random forest classification suggest genomic structure may be driven by a combination of antimicrobial resistance, geography and isolation source, specific to the population cluster examined. We found strong evidence that a recombination event linked to a gene involved in protein synthesis may be responsible for phenotypic differences between comparatively disparate populations. We also offer a list of genes for further examination of B. anthracis evolution, based on high-impact single nucleotide polymorphisms (SNPs) and clustered mutations. The information presented here sheds new light on the factors driving genomic structure in this notorious pathogen and may act as a road map for future studies aimed at understanding functional differences in terms of B. anthracis biogeography, virulence and evolution.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Max Roberto Batista Araújo ◽  
Mireille Ângela Bernardes Sousa ◽  
Luisa Ferreira Seabra ◽  
Letícia Aparecida Caldeira ◽  
Carmem Dolores Faria ◽  
...  

Diphtheria is a potentially fatal infection, mostly caused by diphtheria toxin (DT)-producing Corynebacterium diphtheriae strains. During the last decades, the isolation of DT-producing C. diphtheriae strains has been decreasing worldwide. However, non-DT-producing C. diphtheriae strains emerged as causative agents of cutaneous and invasive infections. Although endemic in countries with warm climates, cutaneous diphtheria is rarely reported in Brazil. Presently, an unusual case of skin lesion in a Brazilian elderly diabetic patient infected by a penicillin-resistant non-DT-producing C. diphtheriae strain was reported. Laboratory diagnosis included mass spectrometry and multiplex PCR analyses. Since cutaneous diphtheria lesions are possible sources of secondary diphtheria cases and systemic diseases and considering that penicillin is the first line of antimicrobial agent for the treatment of these infections, the detection of penicillin-resistant strains of diphtheria bacilli should be a matter of concern. Thus, cases similar to the presently reported should be appropriately investigated and treated, particularly in patients with risk factor (s) for the development of C. diphtheriae invasive infections, such as diabetes. Moreover, health professionals must be aware of the presence of C. diphtheriae in cutaneous lesions of lower limbs, a common type of morbidity in diabetic patients, especially in tropical and subtropical countries.


2020 ◽  
Vol 6 (6) ◽  
Author(s):  
Charlotte Couchoud ◽  
Xavier Bertrand ◽  
Benoit Valot ◽  
Didier Hocquet

Next-generation sequencing (NGS) is now widely used in microbiology to explore genome evolution and the structure of pathogen outbreaks. Bioinformatics pipelines readily detect single-nucleotide polymorphisms or short indels. However, bacterial genomes also evolve through the action of small transposable elements called insertion sequences (ISs), which are difficult to detect due to their short length and multiple repetitions throughout the genome. We designed panISa software for the ab initio detection of IS insertions in the genomes of prokaryotes. PanISa has been released as open source software (GPL3) available from https://github.com/bvalot/panISa. In this study, we assessed the utility of this software for evolutionary studies, by reanalysing five published datasets for outbreaks of human major pathogens in which ISs had not been specifically investigated. We reanalysed the raw data from each study, by aligning the reads against reference genomes and running panISa on the alignments. Each hit was automatically curated and IS-related events were validated on the basis of nucleotide sequence similarity, by comparison with the ISFinder database. In Acinetobacter baumannii , the panISa pipeline identified ISAba1 or ISAba125 upstream from the ampC gene, which encodes a cephalosporinase in all third-generation cephalosporin-resistant isolates. In the genomes of Vibrio cholerae isolates, we found that early Haitian isolates had the same ISs as Nepalese isolates, confirming the inferred history of the contamination of this island. In Enterococcus faecalis , panISa identified regions of high plasticity, including a pathogenicity island enriched in IS-related events. The overall distribution of ISs deduced with panISa was consistent with SNP-based phylogenic trees, for all species considered. The role of ISs in pathogen evolution has probably been underestimated due to difficulties detecting these transposable elements. We show here that panISa is a useful addition to the bioinformatics toolbox for analyses of the evolution of bacterial genomes. PanISa will facilitate explorations of the functional impact of ISs and improve our understanding of prokaryote evolution.


2019 ◽  
Vol 5 (7) ◽  
Author(s):  
Jumamurat R. Bayjanov ◽  
Jery Baan ◽  
Malbert R. C. Rogers ◽  
Annet Troelstra ◽  
Rob J. L. Willems ◽  
...  

Enterococcus faecium is a gut commensal of humans and animals. In addition, it has recently emerged as an important nosocomial pathogen through the acquisition of genetic elements that confer resistance to antibiotics and virulence. We performed a whole-genome sequencing-based study on 96 multidrug-resistant E. faecium strains that asymptomatically colonized five patients with the aim of describing the genome dynamics of this species. The patients were hospitalized on multiple occasions and isolates were collected over periods ranging from 15 months to 6.5 years. Ninety-five of the sequenced isolates belonged to E. faecium clade A1, which was previously determined to be responsible for the vast majority of clinical infections. The clade A1 strains clustered into six clonal groups of highly similar isolates, three of which consisted entirely of isolates from a single patient. We also found evidence of concurrent colonization of patients by multiple distinct lineages and transfer of strains between patients during hospitalization. We estimated the evolutionary rate of two clonal groups that each colonized single patients at 12.6 and 25.2 single-nucleotide polymorphisms (SNPs)/genome/year. A detailed analysis of the accessory genome of one of the clonal groups revealed considerable variation due to gene gain and loss events, including the chromosomal acquisition of a 37 kbp prophage and the loss of an element containing carbohydrate metabolism-related genes. We determined the presence and location of 12 different insertion sequence (IS) elements, with ISEfa5 showing a unique pattern of location in 24 of the 25 isolates, suggesting widespread ISEfa5 excision and insertion into the genome during gut colonization. Our findings show that the E. faecium genome is highly dynamic during asymptomatic colonization of the human gut. We observed considerable genomic flexibility due to frequent horizontal gene transfer and recombination, which can contribute to the generation of genetic diversity within the species and, ultimately, can contribute to its success as a nosocomial pathogen.


Microbiology ◽  
2020 ◽  
Author(s):  
Sergio E. Mares ◽  
Michelle M. King ◽  
Aya Kubo ◽  
Anna A. Khanov ◽  
Erika I. Lutter ◽  
...  

Pseudomonas aeruginosa infects patients with cystic fibrosis, burns, wounds and implants. Previously, our group showed that elevated Ca2+ positively regulates the production of several virulence factors in P. aeruginosa , such as biofilm formation, production of pyocyanin and secreted proteases. We have identified a Ca2+-regulated β-propeller putative phytase, CarP, which is required for Ca2+ tolerance, regulation of the intracellular Ca2+ levels, and plays a role in Ca2+ regulation of P. aeruginosa virulence. Here, we studied the conservation of carP sequence and its occurrence in diverse phylogenetic groups of bacteria. In silico analysis revealed that carP and its two paralogues PA2017 and PA0319 are primarily present in P. aeruginosa and belong to the core genome of the species. We identified 155 single nucleotide alterations within carP, 42 of which lead to missense mutations with only three that affected the predicted 3D structure of the protein. PCR analyses with carP-specific primers detected P. aeruginosa specifically in 70 clinical and environmental samples. Sequence comparison demonstrated that carP is overall highly conserved in P. aeruginosa isolated from diverse environments. Such evolutionary preservation of carP illustrates its importance for P. aeruginosa adaptations to diverse environments and demonstrates its potential as a biomarker.


Sign in / Sign up

Export Citation Format

Share Document