VicRK and CovR polymorphisms in Streptococcus mutans strains associated with cardiovascular infections

2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Letícia T. Oliveira ◽  
Lívia A. Alves ◽  
Erika N. Harth-Chu ◽  
Ryota Nomura ◽  
Kazuhiko Nakano ◽  
...  

Introduction. Streptococcus mutans , a common species of the oral microbiome, expresses virulence genes promoting cariogenic dental biofilms, persistence in the bloodstream and cardiovascular infections. Gap statement. Virulence gene expression is variable among S. mutans strains and controlled by the transcription regulatory systems VicRK and CovR. Aim. This study investigates polymorphisms in the vicRK and covR loci in S. mutans strains isolated from the oral cavity or from the bloodstream, which were shown to differ in expression of covR, vicRK and downstream genes. Methodology. The transcriptional activities of covR, vicR and vicK were compared by RT-qPCR between blood and oral strains after exposure to human serum. PCR-amplified promoter and/or coding regions of covR and vicRK of 18 strains (11 oral and 7 blood) were sequenced and compared to the reference strain UA159. Results. Serum exposure significantly reduced covR and vicR/K transcript levels in most strains (P<0.05), but reductions were higher in oral than in blood strains. Single-nucleotide polymorphisms (SNPs) were detected in covR regulatory and coding regions, but SNPs affecting the CovR effector domain were only present in two blood strains. Although vicR was highly conserved, vicK showed several SNPs, and SNPs affecting VicK regions important for autokinase activity were found in three blood strains. Conclusions. This study reveals transcriptional and structural diversity in covR and vicR/K, and identifies polymorphisms of functional relevance in blood strains, indicating that covR and vicRK might be important loci for S. mutans adaptation to host selective pressures associated with virulence diversity.

mSystems ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Amy Platenkamp ◽  
Jay L. Mellies

ABSTRACT Archetypal pathogenic bacterial strains are often used to elucidate regulatory networks of an entire pathovar, which encompasses multiple lineages and phylogroups. With enteropathogenic Escherichia coli (EPEC) as a model system, Hazen and colleagues (mSystems 6:e00024-17, 2017, https://doi.org/10.1128/mSystems.00024-17 ) used 9 isolates representing 8 lineages and 3 phylogroups to find that isolates with similar genomic sequences exhibit similarities in global transcriptomes under conditions of growth in medium that induces virulence gene expression, and they found variation among individual isolates. Archetypal pathogenic bacterial strains are often used to elucidate regulatory networks of an entire pathovar, which encompasses multiple lineages and phylogroups. With enteropathogenic Escherichia coli (EPEC) as a model system, Hazen and colleagues (mSystems 6:e00024-17, 2017, https://doi.org/10.1128/mSystems.00024-17 ) used 9 isolates representing 8 lineages and 3 phylogroups to find that isolates with similar genomic sequences exhibit similarities in global transcriptomes under conditions of growth in medium that induces virulence gene expression. They also found variation among individual isolates. Their work illustrates the importance of moving beyond observing regulatory phenomena of a limited number of regulons in a few archetypal strains, with the possibility of correlating clinical symptoms to key transcriptional pathways across lineages and phylogroups.


2019 ◽  
Vol 1 (8) ◽  
Author(s):  
Xiao-Lin Tian ◽  
Miao Li ◽  
Zachariah Scinocca ◽  
Heather Rutherford ◽  
Yung-Hua Li

The type II toxin–antitoxin (TA) modules, mazEF and relBE, in Streptococcus mutans have been implicated in stress response, antibiotic tolerance and persister cell formation. However, how S. mutans regulates these systems to prevent unwanted toxin activation and persister cell formation is unclear. In this study, we provide evidence that ClpP is required for the proteolytic regulation of these TA systems and persister cell formation in S. mutans following antibiotic challenge. A persister viability assay showed that S. mutans UA159 (WT) formed a larger quantity of persister cells than its isogenic mutant ΔclpP following antibiotic challenge. However, the lux reporter assay revealed that clpP deletion did not affect the transcriptional levels of mazEF and relBE, since no significant differences (P>0.05) in the reporter activities were detected between the wild-type and ΔclpP background. Instead, all antibiotics tested at a sub-minimum inhibitory concentration (sub-MIC) induced transcriptional levels of mazEF and relBE operons. We then examined the protein profiles of His-tagged MazE and RelB proteins in the UA159 and ΔclpP backgrounds by Western blotting analysis. The results showed that S. mutans strains grown under non-stress conditions expressed very low but detectable levels of MazE and RelB antitoxin proteins. Antibiotics at sub-MICs induced the levels of the MazE and RelB proteins, but the protein levels decreased rapidly in the wild-type background. In contrast, a stable level of MazE and RelB proteins could be detected in the ΔclpP mutant background, suggesting that both proteins accumulated in the ΔclpP mutant. We conclude that ClpP is required for the proteolytic regulation of cellular levels of the MazE and RelB antitoxins in S. mutans , which may play a critical role in modulating the TA activities and persister cell formation of this organism following antibiotic challenge.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Sébastien O. Leclercq ◽  
Maxime Branger ◽  
David G. E. Smith ◽  
Pierre Germon

Escherichia coli is a very versatile species for which diversity has been explored from various perspectives highlighting, for example, phylogenetic groupings and pathovars, as well as a wide range of O serotypes. The highly variable O-antigen, the most external part of the lipopolysaccharide (LPS) component of the outer membrane of E. coli , is linked to the innermost lipid A through the core region of LPS of which five different structures, denominated K-12, R1, R2, R3 and R4, have been characterized so far. The aim of the present study was to analyse the prevalence of these LPS core types in the E. coli species and explore their distribution in the different E. coli phylogenetic groups and in relationship with the virulence gene repertoire. Results indicated an uneven distribution of core types between the different phylogroups, with phylogroup A strains being the most diverse in terms of LPS core types, while phylogroups B1, D and E strains were dominated by the R3 type, and phylogroups B2 and C strains were dominated by the R1 type. Strains carrying the LEE virulence operon were mostly of the R3 type whatever the phylogroup while, within phylogroup B2, strains carrying a K-12 core all belonged to the complex STc131, one of the major clones of extraintestinal pathogenic E. coli (ExPEC) strains. The origin of this uneven distribution is discussed but remains to be fully explained, as well as the consequences of carrying a specific core type on the wider aspects of bacterial phenotype.


2015 ◽  
Vol 197 (22) ◽  
pp. 3601-3615 ◽  
Author(s):  
Grace Spatafora ◽  
John Corbett ◽  
Louis Cornacchione ◽  
William Daly ◽  
Diego Galan ◽  
...  

ABSTRACTStreptococcus mutansis the causative agent of dental caries, a significant concern for human health, and therefore an attractive target for therapeutics development. Previous work in our laboratory has identified a homodimeric, manganese-dependent repressor protein, SloR, as an important regulator of cariogenesis and has used site-directed mutagenesis to map functions to specific regions of the protein. Here we extend those studies to better understand the structural interaction between SloR and its operator and its effector metal ions. The results of DNase I assays indicate that SloR protects a 42-bp region of DNA that overlaps thesloABCpromoter on theS. mutansUA159 chromosome, while electrophoretic mobility shift and solution binding assays indicate that each of two SloR dimers binds to this region. Real-time semiquantitative reverse transcriptase PCR (real-time semi-qRT-PCR) experiments were used to determine the individual base pairs that contribute to SloR-DNA binding specificity. Solution studies indicate that Mn2+is better than Zn2+at specifically activating SloR to bind DNA, and yet the 2.8-Å resolved crystal structure of SloR bound to Zn2+provides insight into the means by which selective activation by Mn2+may be achieved and into how SloR may form specific interactions with its operator. Taken together, these experimental observations are significant because they can inform rational drug design aimed at alleviating and/or preventingS. mutans-induced caries formation.IMPORTANCEThis report focuses on investigating the SloR protein as a regulator of essential metal ion transport and virulence gene expression in the oral pathogenStreptococcus mutansand on revealing the details of SloR binding to its metal ion effectors and binding to DNA that together facilitate this expression. We used molecular and biochemical approaches to characterize the interaction of SloR with Mn2+and with its SloR recognition element to gain a clearer picture of the regulatory networks that optimize SloR-mediated metal ion homeostasis and virulence gene expression inS. mutans. These experiments can have a significant impact on caries treatment and/or prevention by revealing theS. mutansSloR-DNA binding interface as an appropriate target for the development of novel therapeutic interventions.


2021 ◽  
Vol 7 (8) ◽  
Author(s):  
Spencer A. Bruce ◽  
Yen-Hua Huang ◽  
Pauline L. Kamath ◽  
Henriette van Heerden ◽  
Wendy C. Turner

Bacillus anthracis, the causative agent of anthrax disease, is a worldwide threat to livestock, wildlife and public health. While analyses of genetic data from across the globe have increased our understanding of this bacterium’s population genomic structure, the influence of selective pressures on this successful pathogen is not well understood. In this study, we investigate the effects of antimicrobial resistance, phage diversity, geography and isolation source in shaping population genomic structure. We also identify a suite of candidate genes potentially under selection, driving patterns of diversity across 356 globally extant B. anthracis genomes. We report ten antimicrobial resistance genes and 11 different prophage sequences, resulting in the first large-scale documentation of these genetic anomalies for this pathogen. Results of random forest classification suggest genomic structure may be driven by a combination of antimicrobial resistance, geography and isolation source, specific to the population cluster examined. We found strong evidence that a recombination event linked to a gene involved in protein synthesis may be responsible for phenotypic differences between comparatively disparate populations. We also offer a list of genes for further examination of B. anthracis evolution, based on high-impact single nucleotide polymorphisms (SNPs) and clustered mutations. The information presented here sheds new light on the factors driving genomic structure in this notorious pathogen and may act as a road map for future studies aimed at understanding functional differences in terms of B. anthracis biogeography, virulence and evolution.


2020 ◽  
Vol 6 (12) ◽  
Author(s):  
Lingzi Xiaoli ◽  
Eileen Benoliel ◽  
Yanhui Peng ◽  
Janessa Aneke ◽  
Pamela K. Cassiday ◽  
...  

Between July 2018 and May 2019, Corynebacterium diphtheriae was isolated from eight patients with non-respiratory infections, seven of whom experienced homelessness and had stayed at shelters in King County, WA, USA. All isolates were microbiologically identified as nontoxigenic C. diphtheriae biovar mitis. Whole-genome sequencing confirmed that all case isolates were genetically related, associated with sequence type 445 and differing by fewer than 24 single-nucleotide polymorphisms (SNPs). Compared to publicly available C. diphtheriae genomic data, these WA isolates formed a discrete cluster with SNP variation consistent with previously reported outbreaks. Virulence-related gene content variation within the highly related WA cluster isolates was also observed. These results indicated that genome characterization can readily support epidemiology of nontoxigenic C. diphtheriae .


2020 ◽  
Vol 6 (6) ◽  
Author(s):  
Charlotte Couchoud ◽  
Xavier Bertrand ◽  
Benoit Valot ◽  
Didier Hocquet

Next-generation sequencing (NGS) is now widely used in microbiology to explore genome evolution and the structure of pathogen outbreaks. Bioinformatics pipelines readily detect single-nucleotide polymorphisms or short indels. However, bacterial genomes also evolve through the action of small transposable elements called insertion sequences (ISs), which are difficult to detect due to their short length and multiple repetitions throughout the genome. We designed panISa software for the ab initio detection of IS insertions in the genomes of prokaryotes. PanISa has been released as open source software (GPL3) available from https://github.com/bvalot/panISa. In this study, we assessed the utility of this software for evolutionary studies, by reanalysing five published datasets for outbreaks of human major pathogens in which ISs had not been specifically investigated. We reanalysed the raw data from each study, by aligning the reads against reference genomes and running panISa on the alignments. Each hit was automatically curated and IS-related events were validated on the basis of nucleotide sequence similarity, by comparison with the ISFinder database. In Acinetobacter baumannii , the panISa pipeline identified ISAba1 or ISAba125 upstream from the ampC gene, which encodes a cephalosporinase in all third-generation cephalosporin-resistant isolates. In the genomes of Vibrio cholerae isolates, we found that early Haitian isolates had the same ISs as Nepalese isolates, confirming the inferred history of the contamination of this island. In Enterococcus faecalis , panISa identified regions of high plasticity, including a pathogenicity island enriched in IS-related events. The overall distribution of ISs deduced with panISa was consistent with SNP-based phylogenic trees, for all species considered. The role of ISs in pathogen evolution has probably been underestimated due to difficulties detecting these transposable elements. We show here that panISa is a useful addition to the bioinformatics toolbox for analyses of the evolution of bacterial genomes. PanISa will facilitate explorations of the functional impact of ISs and improve our understanding of prokaryote evolution.


2019 ◽  
Vol 5 (7) ◽  
Author(s):  
Jumamurat R. Bayjanov ◽  
Jery Baan ◽  
Malbert R. C. Rogers ◽  
Annet Troelstra ◽  
Rob J. L. Willems ◽  
...  

Enterococcus faecium is a gut commensal of humans and animals. In addition, it has recently emerged as an important nosocomial pathogen through the acquisition of genetic elements that confer resistance to antibiotics and virulence. We performed a whole-genome sequencing-based study on 96 multidrug-resistant E. faecium strains that asymptomatically colonized five patients with the aim of describing the genome dynamics of this species. The patients were hospitalized on multiple occasions and isolates were collected over periods ranging from 15 months to 6.5 years. Ninety-five of the sequenced isolates belonged to E. faecium clade A1, which was previously determined to be responsible for the vast majority of clinical infections. The clade A1 strains clustered into six clonal groups of highly similar isolates, three of which consisted entirely of isolates from a single patient. We also found evidence of concurrent colonization of patients by multiple distinct lineages and transfer of strains between patients during hospitalization. We estimated the evolutionary rate of two clonal groups that each colonized single patients at 12.6 and 25.2 single-nucleotide polymorphisms (SNPs)/genome/year. A detailed analysis of the accessory genome of one of the clonal groups revealed considerable variation due to gene gain and loss events, including the chromosomal acquisition of a 37 kbp prophage and the loss of an element containing carbohydrate metabolism-related genes. We determined the presence and location of 12 different insertion sequence (IS) elements, with ISEfa5 showing a unique pattern of location in 24 of the 25 isolates, suggesting widespread ISEfa5 excision and insertion into the genome during gut colonization. Our findings show that the E. faecium genome is highly dynamic during asymptomatic colonization of the human gut. We observed considerable genomic flexibility due to frequent horizontal gene transfer and recombination, which can contribute to the generation of genetic diversity within the species and, ultimately, can contribute to its success as a nosocomial pathogen.


Author(s):  
Shanshan Liu ◽  
Huihui Li ◽  
Kai Zhang ◽  
Zhenfei Guo ◽  
Qingwei Zheng ◽  
...  

Introduction. Streptococcus mutans is an important cariogenic microbe. Hypothesis/Gap Statement. The potential characteristics of S. mutans isolates from site-specific dental plaque are still not clear. Aim. This study aimed to investigate the phenotypic and genetic characteristics of S. mutans isolates from site-specific dental plaque in China. Methodology. We used S. mutans isolated from children with early-childhood caries (ECC) and caries-free children to compare the phenotypic and genetic characteristics of S. mutans from site-specific dental plaque samples. The ECC subjects presented two sites: a cavitated lesion and a sound surface. The caries-free subjects presented one sound surface. Growth pattern, biofilm, decrease in pH, extracellular polysaccharide, expression levels of virulence-related genes, multilocus sequence typing (MLST) and phylogenetic trees were evaluated among these three sites. Results. The phenotypes detected between the cavitated and sound surfaces of ECC children were similar. However, the capacity for biofilm formation, pH drop and expression levels of genes (gtfB and spaP) of S. mutans in the caries-free group were lower compared with those of the ECC group. We identified 44 new alleles and 77 new sequence types. More than 90 % of the children with ECC shared an identical sequence type. The distribution of sequence types among different subjects showed diversity, and child-to-child transmission was detected. Conclusions. This is the first report of MLST on site-specific dental plaques in a single subject, and indicates that S. mutans isolated from site-specific dental plaque of a single subject showed similar phenotypes as a result of the isolates were closely related.


2020 ◽  
Vol 86 (16) ◽  
Author(s):  
Chunru Guan ◽  
Faai Che ◽  
Huoxiang Zhou ◽  
Yiwei Li ◽  
Yaru Li ◽  
...  

ABSTRACT Dental caries is a biofilm-mediated disease in which Streptococcus mutans is the main pathogenic microorganism, and its incidence is closely related to sucrose. Rubusoside is a natural nonnutritive sweetener isolated from Rubus suavissimus S. Lee. This study was designed to determine the effect of this sucrose substitute on the cariogenic properties and virulence gene expression of S. mutans biofilms. S. mutans was exposed to brain heart infusion (BHI) medium (as a control), 1% sucrose-supplemented medium, 1% rubusoside-supplemented medium, and 1% xylitol-supplemented medium. The growth curve of the biofilm was monitored by crystal violet staining, and the pH was measured every 24 h. After 5 days, the biofilms formed on the glass coverslips were recovered to determine the biomass (dry weight and total amount of soluble proteins), numbers of CFU, and amounts of intra- and extracellular polysaccharides. Biofilm structural imaging was performed using a scanning electron microscope (SEM). Virulence gene expression (gtfB, gtfC, gtfD, ftf, spaP, gbpB, ldh, atpF, vicR, and comD) was determined by reverse transcription-quantitative PCR. Growth in rubusoside resulted in lower levels of acid production than observed during growth in sucrose, xylitol, and the control, while it also reduced the level of biofilm accumulation and bacterial viability and even reduced the level of production of extracellular polysaccharides. By SEM, the levels of biofilm formation and extracellular matrix during growth in rubusoside were lower than these levels during growth in sucrose and xylitol. From the perspective of virulence genes, growth in rubusoside and xylitol significantly inhibited the expression of virulence genes compared with their levels of expression after growth in sucrose. Among these genes, gtfB, gtfC, gbpB, ldh, and comD downregulation was found with growth in rubusoside compared with their expression with growth in xylitol. Therefore, rubusoside appears to be less potentially cariogenic than sucrose and xylitol and may become an effective sucrose substitute for caries prevention. Further studies are needed to deepen these findings. IMPORTANCE Dental caries is a major public health challenge and places heavy biological, social, and financial burdens on individuals and health care systems. To palliate the deleterious effect of sucrose on the virulence factors of S. mutans, massive commercial efforts have been oriented toward developing products that may act as sucrose substitutes. Rubusoside, a natural sucrose substitute, is a plant extract with a high level of sweetness. Although some studies have shown that rubusoside does not produce acids or inhibit the growth of S. mutans, little attention has been paid to its effect on dental biofilm and the underlying mechanisms. Our study focuses on the effect of rubusoside on the formation and structure of biofilms and the expression of virulence genes. The results confirm that rubusoside can inhibit accumulation, bacterial viability, polysaccharide production by the biofilm, and related gene expression. These results provide further insight into the cariogenicity of S. mutans biofilms and demonstrate a new perspective for studying the impact of sucrose substitutes on caries.


Sign in / Sign up

Export Citation Format

Share Document