scholarly journals Microbe Profile: Aquifex aeolicus: an extreme heat-loving bacterium that feeds on gases and inorganic chemicals

Microbiology ◽  
2020 ◽  
Author(s):  
Marianne Guiral ◽  
Marie-Thérèse Giudici-Orticoni

The bacterium ‘ Aquifex aeolicus ’ is the model organism for the deeply rooted phylum Aquificae . This ‘water-maker’ is an H2-oxidizing microaerophile that flourishes in extremely hot marine habitats, and it also thrives on the sulphur compounds commonly found in volcanic environments. ‘ A. aeolicus ’ has hyper-stable proteins and a fully sequenced genome, with some of its essential metabolic pathways deciphered (including energy conservation). Many of its proteins have also been characterized (especially structurally), including many of the enzymes involved in replication, transcription, RNA processing and cell envelope biosynthesis. Enzymes that are of promise for biotechnological applications have been widely investigated in this species. ‘ A. aeolicus ’ has also added to our understanding of the origins of life and evolution.

Microbiology ◽  
2020 ◽  
Vol 166 (1) ◽  
pp. 73-84 ◽  
Author(s):  
Cristina Bez ◽  
Sree Gowrinadh Javvadi ◽  
Iris Bertani ◽  
Giulia Devescovi ◽  
Corrado Guarnaccia ◽  
...  

Azelaic acid is a dicarboxylic acid that has recently been shown to play a role in plant-bacteria signalling and also occurs naturally in several cereals. Several bacteria have been reported to be able to utilize azelaic acid as a unique source of carbon and energy, including Pseudomonas nitroreducens . In this study, we utilize P. nitroreducens as a model organism to study bacterial degradation of and response to azelaic acid. We report genetic evidence of azelaic acid degradation and the identification of a transcriptional regulator that responds to azelaic acid in P. nitroreducens DSM 9128. Three mutants possessing transposons in genes of an acyl-CoA ligase, an acyl-CoA dehydrogenase and an isocitrate lyase display a deficient ability in growing in azelaic acid. Studies on transcriptional regulation of these genes resulted in the identification of an IclR family repressor that we designated as AzeR, which specifically responds to azelaic acid. A bioinformatics survey reveals that AzeR is confined to a few proteobacterial genera that are likely to be able to degrade and utilize azelaic acid as the sole source of carbon and energy.


Microbiology ◽  
2021 ◽  
Author(s):  
Céline Rens ◽  
Joseph D. Chao ◽  
Danielle L. Sexton ◽  
Elitza I. Tocheva ◽  
Yossef Av-Gay

The success of Mycobacterium tuberculosis as a pathogen is well established: tuberculosis is the leading cause of death by a single infectious agent worldwide. The threat of multi- and extensively drug-resistant bacteria has renewed global concerns about this pathogen and understanding its virulence strategies will be essential in the fight against tuberculosis. The current review will focus on phthiocerol dimycocerosates (PDIMs), a long-known and well-studied group of complex lipids found in the M. tuberculosis cell envelope. Numerous studies show a role for PDIMs in several key steps of M. tuberculosis pathogenesis, with recent studies highlighting its involvement in bacterial virulence, in association with the ESX-1 secretion system. Yet, the mechanisms by which PDIMs help M. tuberculosis to control macrophage phagocytosis, inhibit phagosome acidification and modulate host innate immunity, remain to be fully elucidated.


Microbiology ◽  
2020 ◽  
Vol 166 (3) ◽  
pp. 296-305 ◽  
Author(s):  
Tsaone Tamuhla ◽  
Lydia Joubert ◽  
Danicke Willemse ◽  
Monique J. Williams

Iron-sulphur (FeS) clusters are versatile cofactors required for a range of biological processes within cells. Due to the reactive nature of the constituent molecules, assembly and delivery of these cofactors requires a multi-protein machinery in vivo. In prokaryotes, SufT homologues are proposed to function in the maturation and transfer of FeS clusters to apo-proteins. This study used targeted gene deletion to investigate the role of SufT in the physiology of mycobacteria, using Mycobacterium smegmatis as a model organism. Deletion of the sufT gene in M. smegmatis had no impact on growth under standard culture conditions and did not significantly alter activity of the FeS cluster dependent enzymes succinate dehydrogenase (SDH) and aconitase (ACN). Furthermore, the ΔsufT mutant was no more sensitive than the wild-type strain to the redox cycler 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), or the anti-tuberculosis drugs isoniazid, clofazimine or rifampicin. In contrast, the ΔsufT mutant displayed a growth defect under iron limiting conditions, and an increased requirement for iron during biofilm formation. This data suggests that SufT is an accessory factor in FeS cluster biogenesis in mycobacteria which is required under conditions of iron limitation.


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1340-1350 ◽  
Author(s):  
Isolde M. Francis ◽  
Kenneth N. Jochimsen ◽  
Paul De Vos ◽  
Ariena H. C. van Bruggen

The genus Rhizorhapis gen. nov. (to replace the illegitimate genus name Rhizomonas ) is proposed for strains of Gram-negative bacteria causing corky root of lettuce, a widespread and important lettuce disease worldwide. Only one species of the genus Rhizomonas was described, Rhizomonas suberifaciens , which was subsequently reclassified as Sphingomonas suberifaciens based on 16S rRNA gene sequences and the presence of sphingoglycolipid in the cell envelope. However, the genus Sphingomonas is so diverse that further reclassification was deemed necessary. Twenty new Rhizorhapis gen. nov.- and Sphingomonas -like isolates were obtained from lettuce or sow thistle roots, or from soil using lettuce seedlings as bait. These and previously reported isolates were characterized in a polyphasic study including 16S rRNA gene sequencing, DNA–DNA hybridization, DNA G+C content, whole-cell fatty acid composition, morphology, substrate oxidation, temperature and pH sensitivity, and pathogenicity to lettuce. The isolates causing lettuce corky root belonged to the genera Rhizorhapis gen. nov., Sphingobium , Sphingopyxis and Rhizorhabdus gen. nov. More specifically, we propose to reclassify Rhizomonas suberifaciens as Rhizorhapis suberifaciens gen. nov., comb. nov. (type strain, CA1T = LMG 17323T = ATCC 49355T), and also propose the novel species Sphingobium xanthum sp. nov., Sphingobium mellinum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov. with the type strains NL9T ( = LMG 12560T = ATCC 51296T), WI4T ( = LMG 11032T = ATCC 51292T) and SP1T ( = LMG 12581T = ATCC 51289T), respectively. Several strains isolated from lettuce roots belonged to the genus Sphingomonas , but none of them were pathogenic.


Microbiology ◽  
2020 ◽  
Vol 166 (7) ◽  
pp. 629-640 ◽  
Author(s):  
Monica Feng ◽  
Andrew C. Schaff ◽  
Mitchell F. Balish

The atypical bacterial pathogen Mycoplasma pneumoniae is a leading etiological agent of community-acquired pneumonia in humans; infections are often recalcitrant, recurrent and resistant to antibiotic treatment. These characteristics suggest a mechanism that facilitates long-term colonization in hosts. In an in vitro setting, M. pneumoniae forms biofilms that are unusual in that motility plays no more than a very limited role in their formation and development. Given the unusual nature of M. pneumoniae biofilms, open questions remain concerning phenotypes associated with persistence, such as what properties might favour the bacteria while minimizing host damage. M. pneumoniae also produces several cytotoxic molecules including community-acquired respiratory distress syndrome (CARDS) toxin, H2S and H2O2, but how it deploys these agents during growth is unknown. Whereas several biochemical techniques for biofilm disruption were ineffective, sonication was required for disruption of M. pneumoniae biofilms to generate individual cells for comparative studies, suggesting unusual physical properties likely related to the atypical cell envelope. Nonetheless, like for other bacteria, biofilms were less susceptible to antibiotic inhibition and complement killing than dispersed cells, with resistance increasing as the biofilms matured. CARDS toxin levels and enzymatic activities associated with H2S and H2O2 production were highest during early biofilm formation and decreased over time, suggesting attenuation of virulence in connection with chronic infection. Collectively, these findings result in a model of how M. pneumoniae biofilms contribute to both the establishment and propagation of M. pneumoniae infections, and how both biofilm towers and individual cells participate in persistence and chronic disease.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 957-962 ◽  
Author(s):  
A. Srinivas ◽  
B. Vinay Kumar ◽  
B. Divya Sree ◽  
L. Tushar ◽  
Ch. Sasikala ◽  
...  

Two strains (JA746T and JA756T) having yellowish brown-to-green pigment were isolated from a solar saltern and a pink pond, respectively. While both strains were non-motile and shared the presence of bacteriochlorophyll-a, major cellular fatty acids (C18 : 1ω7c, C16 : 0, C18 : 0), quinone (Q-10), polar lipids and hopanoids, they differed from each other in their carotenoid composition. The G+C content of genomic DNA of strains JA746T and 756T was 62.4 and 63.3 mol%, respectively. The 16S rRNA gene-based EzTaxon-e blast search analysis of strains JA746T and 756T indicated highest sequence similarity with members of the genus Rhodovulum in the family Rhodobacteraceae of the class Alphaproteobacteria . Strain JA746T has high sequence similarities with Rhodovulum visakhapatnamense JA181T (97.3 %), Rhodovulum steppense A-20sT (97.3 %), Rhodovulum phaeolacus JA580T (97 %), Rhodovulum strictum MB-G2T (97 %) and other members of the genus Rhodovulum (<97 %). Strain JA756T has high sequence similarities with Rhodovulum visakhapatnamense JA181T (99.8 %), Rhodovulum sulfidophilum Hansen W4T (99.1 %), Rhodovulum kholense JA297T (97.9 %) and other members of the genus Rhodovulum (<97 %). The sequence similarity between strains JA746T and JA756T was 97.5 %. However, these strains are not closely related to each other or to their phylogenetic neighbours since the DNA–DNA reassociation values were less than 56 %. The genomic information was also supported by phenotypic and chemotaxonomic results, leading us to classify strains JA746T ( = NBRC 108898T = KCTC 15180T) and JA756T ( = NBRC 109122T = KCTC 15223T) as the type strains of two novel species of the genus Rhodovulum , for which the names Rhodovulum salis sp. nov. and Rhodovulum viride sp. nov. are proposed, respectively.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1149-1154 ◽  
Author(s):  
Varsha Kale ◽  
Snædís H. Björnsdóttir ◽  
Ólafur H. Friðjónsson ◽  
Sólveig K. Pétursdóttir ◽  
Sesselja Ómarsdóttir ◽  
...  

A thermophilic, aerobic, Gram-stain-negative, filamentous bacterium, strain PRI-4131T, was isolated from an intertidal hot spring in Isafjardardjup, NW Iceland. The strain grew chemo-organotrophically on various carbohydrates. The temperature range for growth was 40–65 °C (optimum 55 °C), the pH range was pH 6.5–9.0 (optimum pH 7.0) and the NaCl range was 0–3 % (w/v) (optimum 0.5 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PRI-4131T represented a distinct lineage within the class Caldilineae of the phylum Chloroflexi. The highest levels of sequence similarity, about 91 %, were with Caldilinea aerophila STL-6-O1T and Caldilinea tarbellica D1-25-10-4T. Fermentative growth was not observed for strain PRI-4131T, which, in addition to other characteristics, distinguished it from the two Caldilinea species. Owing to both phylogenetic and phenotypic differences from the described members of the class Caldilineae , we propose to accommodate strain PRI-4131T in a novel species in a new genus, Litorilinea aerophila gen. nov., sp. nov. The type strain of Litorilinea aerophila is PRI-4131T ( = DSM 25763T  = ATCC BAA-2444T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2589-2592 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Song-Ih Han ◽  
Kyung-Sook Whang

A novel actinobacterium, designated strain BR-34T, was isolated from rhizosphere soil of bamboo (Phyllostachys nigro var. henonis) sampled in Damyang, Korea. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Catenulispora . The strain contained iso-C16 : 0 as the major fatty acid and MK-9(H4), MK-9(H6) and MK-9(H8) as major isoprenoid quinones. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BR-34T formed a cluster separate from members of the genus Catenulispora and was related most closely to Catenulispora acidiphila ID139908T (97.4 % similarity), Catenulispora rubra Aac-30T (97.3 %), Catenulispora yoronensis TT N02-20T (97.3 %) and Catenulispora subtropica TT 99-48T (97 %). However, the level of DNA–DNA relatedness between strain BR-34T and C. acidiphila ID139908T was only 45.32 %. Based on DNA–DNA relatedness, morphological and phenotypic data, strain BR-34T could be distinguished from the type strains of phylogenetically related species. It is therefore considered to represent a novel species of the genus Catenulispora , for which the name Catenulispora graminis sp. nov. is proposed. The type strain is BR-34T ( = KACC 15070T = NBRC 107755T).


Sign in / Sign up

Export Citation Format

Share Document