scholarly journals Mycoplasma pneumoniae biofilms grown in vitro: traits associated with persistence and cytotoxicity

Microbiology ◽  
2020 ◽  
Vol 166 (7) ◽  
pp. 629-640 ◽  
Author(s):  
Monica Feng ◽  
Andrew C. Schaff ◽  
Mitchell F. Balish

The atypical bacterial pathogen Mycoplasma pneumoniae is a leading etiological agent of community-acquired pneumonia in humans; infections are often recalcitrant, recurrent and resistant to antibiotic treatment. These characteristics suggest a mechanism that facilitates long-term colonization in hosts. In an in vitro setting, M. pneumoniae forms biofilms that are unusual in that motility plays no more than a very limited role in their formation and development. Given the unusual nature of M. pneumoniae biofilms, open questions remain concerning phenotypes associated with persistence, such as what properties might favour the bacteria while minimizing host damage. M. pneumoniae also produces several cytotoxic molecules including community-acquired respiratory distress syndrome (CARDS) toxin, H2S and H2O2, but how it deploys these agents during growth is unknown. Whereas several biochemical techniques for biofilm disruption were ineffective, sonication was required for disruption of M. pneumoniae biofilms to generate individual cells for comparative studies, suggesting unusual physical properties likely related to the atypical cell envelope. Nonetheless, like for other bacteria, biofilms were less susceptible to antibiotic inhibition and complement killing than dispersed cells, with resistance increasing as the biofilms matured. CARDS toxin levels and enzymatic activities associated with H2S and H2O2 production were highest during early biofilm formation and decreased over time, suggesting attenuation of virulence in connection with chronic infection. Collectively, these findings result in a model of how M. pneumoniae biofilms contribute to both the establishment and propagation of M. pneumoniae infections, and how both biofilm towers and individual cells participate in persistence and chronic disease.

2021 ◽  
Author(s):  
Rama Chaudhry ◽  
K. Sreenath ◽  
E. V. Vinayaraj ◽  
Biswajeet Sahoo ◽  
M. R. Vishnu Narayanan ◽  
...  

We report co-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Mycoplasma pneumoniae in a patient with pneumonia in India. Atypical bacterial pathogens causing community-acquired pneumonia may share similar clinical presentations and radiographic features with SARS-CoV-2 making a thorough differential diagnosis essential. The co-infection of SARS-CoV-2 and M. pneumoniae is infrequently reported in the literature. Broader testing for common respiratory pathogens should be performed in severe COVID-19 cases to rule out other concurrent infections. Early identification of co-existing respiratory pathogens could provide pathogen-directed therapy, and can save patient lives during the ongoing COVID-19 outbreak.


2021 ◽  
Vol 70 (9) ◽  
Author(s):  
Vidula Iyer ◽  
Janhavi Raut ◽  
Anindya Dasgupta

The pH of skin is critical for skin health and resilience and plays a key role in controlling the skin microbiome. It has been well reported that under dysbiotic conditions such as atopic dermatitis (AD), eczema, etc. there are significant aberrations of skin pH, along with a higher level of Staphylococcus aureus compared to the commensal Staphylococcus epidermidis on skin. To understand the effect of pH on the relative growth of S. epidermidis and S. aureus , we carried out simple in vitro growth kinetic studies of the individual microbes under varying pH conditions. We demonstrated that the growth kinetics of S. epidermidis is relatively insensitive to pH within the range of 5–7, while S. aureus shows a stronger pH dependence in that range. Gompertz’s model was used to fit the pH dependence of the growth kinetics of the two bacteria and showed that the equilibrium bacterial count of S. aureus was the more sensitive parameter. The switch in growth rate happens at a pH of 6.5–7. Our studies are in line with the general hypothesis that keeping the skin pH within an acidic range is advantageous in terms of keeping the skin microbiome in balance and maintaining healthy skin.


Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Alberto Gonçalves Evangelista ◽  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Eduardo Henrique Custódio Matté ◽  
Mônica Moura Milek ◽  
...  

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella . In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25–22.5 g l–1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg–1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g−1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella . After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g–1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml–1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


Author(s):  
Catrina Olivera ◽  
Vuong Van Hung Le ◽  
Catherine Davenport ◽  
Jasna Rakonjac

Introduction. There is an urgent need for effective therapies against bacterial infections, especially those caused by antibiotic-resistant Gram-negative pathogens. Hypothesis. Synergistic combinations of existing antimicrobials show promise due to their enhanced efficacies and reduced dosages which can mitigate adverse effects, and therefore can be used as potential antibacterial therapy. Aim. In this study, we sought to characterize the in vitro interaction of 5-nitrofurans, vancomycin and sodium deoxycholate (NVD) against pathogenic bacteria. Methodology. The synergy of the NVD combination was investigated in terms of growth inhibition and bacterial killing using checkerboard and time-kill assays, respectively. Results. Using a three-dimensional checkerboard assay, we showed that 5-nitrofurans, sodium deoxycholate and vancomycin interact synergistically in the growth inhibition of 15 out of 20 Gram-negative strains tested, including clinically significant pathogens such as carbapenemase-producing Escherichia coli , Klebsiella pneumoniae and Acinetobacter baumannii , and interact indifferently against the Gram-positive strains tested. The time-kill assay further confirmed that the triple combination was bactericidal in a synergistic manner. Conclusion. This study demonstrates the synergistic effect of 5-nitrofurans, sodium deoxycholate and vancomycin against Gram-negative pathogens and highlights the potential of the combination as a treatment for Gram-negative and Gram-positive infections.


Microbiology ◽  
2020 ◽  
Vol 166 (5) ◽  
pp. 484-497 ◽  
Author(s):  
Alejandra Arteaga Ide ◽  
Victor M. Hernández ◽  
Liliana Medina-Aparicio ◽  
Edson Carcamo-Noriega ◽  
Lourdes Girard ◽  
...  

In bacteria, l-arginine is a precursor of various metabolites and can serve as a source of carbon and/or nitrogen. Arginine catabolism by arginase, which hydrolyzes arginine to l-ornithine and urea, is common in nature but has not been studied in symbiotic nitrogen-fixing rhizobia. The genome of the alfalfa microsymbiont Sinorhizobium meliloti 1021 has two genes annotated as arginases, argI1 (smc03091) and argI2 (sma1711). Biochemical assays with purified ArgI1 and ArgI2 (as 6His-Sumo-tagged proteins) showed that only ArgI1 had detectable arginase activity. A 1021 argI1 null mutant lacked arginase activity and grew at a drastically reduced rate with arginine as sole nitrogen source. Wild-type growth and arginase activity were restored in the argI1 mutant genetically complemented with a genomically integrated argI1 gene. In the wild-type, arginase activity and argI1 transcription were induced several fold by exogenous arginine. ArgI1 purified as a 6His-Sumo-tagged protein had its highest in vitro enzymatic activity at pH 7.5 with Ni2+ as cofactor. The enzyme was also active with Mn2+ and Co2+, both of which gave the enzyme the highest activities at a more alkaline pH. The 6His-Sumo-ArgI1 comprised three identical subunits based on the migration of the urea-dissociated protein in a native polyacrylamide gel. A Lrp-like regulator (smc03092) divergently transcribed from argI1 was required for arginase induction by arginine or ornithine. This regulator was designated ArgIR. Electrophoretic mobility shift assays showed that purified ArgIR bound to the argI1 promoter in a region preceding the predicted argI1 transcriptional start. Our results indicate that ArgI1 is the sole arginase in S. meliloti , that it contributes substantially to arginine catabolism in vivo and that argI1 induction by arginine is dependent on ArgIR.


2021 ◽  
Vol 70 (7) ◽  
Author(s):  
Souad Belkacemi ◽  
Maryam Tidjani Alou ◽  
Saber Khelaifia ◽  
Didier Raoult

To date, the axenic culture of Treponema pallidum remains a challenge in the field of microbiology despite countless attempts. Here, we conducted a comprehensive bibliographic analysis using several databases and search engines, namely Pubmed, Google scholar, Google, Web of Science and Scopus. Numerous unsuccessful empiric studies have been conducted and evaluated using as criteria dark-field microscopic observation of motile spiral shaped cells in the culture and virulence of the culture through rabbit infectivity. All of these studies failed to induce rabbit infectivity, even when deemed positive after microscopic observation leading to the misnomer of avirulent T. pallidum . In fact, this criterion was improperly chosen because not all spiral shaped cells are T. pallidum . However, these studies led to the formulation of culture media particularly favourable to the growth of several species of Treponema, including Oral Microbiology and Immunology, Zürich medium (OMIZ), Oral Treponeme Enrichment Broth (OTEB) and T-Raoult, thus allowing the increase in the number of cultivable strains of Treponema . The predicted metabolic capacities of T. pallidum show limited metabolism, also exhibited by other non-cultured and pathogenic Treponema species, in contrast to cultured Treponema species. The advent of next generation sequencing represents a turning point in this field, as the knowledge inferred from the genome can finally lead to the axenic culture of T. pallidum .


2022 ◽  
Vol 71 (1) ◽  
Author(s):  
Bailey F. Keefe ◽  
Luiz E. Bermudez

Introduction. Pulmonary infections caused by organisms of the Mycobacterium abscessus complex are increasingly prevalent in populations at risk, such as patients with cystic fibrosis, bronchiectasis and emphysema. Hypothesis. M. abscessus infection of the lung is not observed in immunocompetent individuals, which raises the possibility that the compromised lung environment is a suitable niche for the pathogen to thrive in due to the overproduction of mucus and high amounts of host cell lysis. Aim. Evaluate the ability of M. abscessus to form biofilm and grow utilizing in vitro conditions as seen in immunocompromised lungs of patients. Methodology. We compared biofilm formation and protein composition in the presence and absence of synthetic cystic fibrosis medium (SCFM) and evaluated the bacterial growth when exposed to human DNA. Results. M. abscessus is capable of forming biofilm in SCFM. By eliminating single components found in the medium, it became clear that magnesium works as a signal for the biofilm formation, and chelation of the divalent cations resulted in the suppression of biofilm formation. Investigation of the specific proteins expressed in the presence of SCFM and in the presence of SCFM lacking magnesium revealed many different proteins between the conditions. M. abscessus also exhibited growth in SCFM and in the presence of host cell DNA, although the mechanism of DNA utilization remains unclear. Conclusions. In vitro conditions mimicking the airways of patients with cystic fibrosis appear to facilitate M. abscessus establishment of infection, and elimination of magnesium from the environment may affect the ability of the pathogen to establish infection.


Microbiology ◽  
2021 ◽  
Author(s):  
Céline Rens ◽  
Joseph D. Chao ◽  
Danielle L. Sexton ◽  
Elitza I. Tocheva ◽  
Yossef Av-Gay

The success of Mycobacterium tuberculosis as a pathogen is well established: tuberculosis is the leading cause of death by a single infectious agent worldwide. The threat of multi- and extensively drug-resistant bacteria has renewed global concerns about this pathogen and understanding its virulence strategies will be essential in the fight against tuberculosis. The current review will focus on phthiocerol dimycocerosates (PDIMs), a long-known and well-studied group of complex lipids found in the M. tuberculosis cell envelope. Numerous studies show a role for PDIMs in several key steps of M. tuberculosis pathogenesis, with recent studies highlighting its involvement in bacterial virulence, in association with the ESX-1 secretion system. Yet, the mechanisms by which PDIMs help M. tuberculosis to control macrophage phagocytosis, inhibit phagosome acidification and modulate host innate immunity, remain to be fully elucidated.


2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Bert Bogaerts ◽  
Raf Winand ◽  
Julien Van Braekel ◽  
Stefan Hoffman ◽  
Nancy H. C. Roosens ◽  
...  

Whole genome sequencing (WGS) has become the reference standard for bacterial outbreak investigation and pathogen typing, providing a resolution unattainable with conventional molecular methods. Data generated with Illumina sequencers can however only be analysed after the sequencing run has finished, thereby losing valuable time during emergency situations. We evaluated both the effect of decreasing overall run time, and also a protocol to transfer and convert intermediary files generated by Illumina sequencers enabling real-time data analysis for multiple samples part of the same ongoing sequencing run, as soon as the forward reads have been sequenced. To facilitate implementation for laboratories operating under strict quality systems, extensive validation of several bioinformatics assays (16S rRNA species confirmation, gene detection against virulence factor and antimicrobial resistance databases, SNP-based antimicrobial resistance detection, serotype determination, and core genome multilocus sequence typing) for three bacterial pathogens ( Mycobacterium tuberculosis , Neisseria meningitidis , and Shiga-toxin producing Escherichia coli ) was performed by evaluating performance in function of the two most critical sequencing parameters, i.e. read length and coverage. For the majority of evaluated bioinformatics assays, actionable results could be obtained between 14 and 22 h of sequencing, decreasing the overall sequencing-to-results time by more than half. This study aids in reducing the turn-around time of WGS analysis by facilitating a faster response in time-critical scenarios and provides recommendations for time-optimized WGS with respect to required read length and coverage to achieve a minimum level of performance for the considered bioinformatics assay(s), which can also be used to maximize the cost-effectiveness of routine surveillance sequencing when response time is not essential.


Microbiology ◽  
2020 ◽  
Vol 166 (10) ◽  
pp. 909-917 ◽  
Author(s):  
Sophie P. Bennett ◽  
Maria J. Torres ◽  
Manuel J. Soriano-Laguna ◽  
David J. Richardson ◽  
Andrew J. Gates ◽  
...  

Nitrous oxide (N2O) is a potent greenhouse gas that is produced naturally as an intermediate during the process of denitrification carried out by some soil bacteria. It is consumed by nitrous oxide reductase (N2OR), the terminal enzyme of the denitrification pathway, which catalyses a reduction reaction to generate dinitrogen. N2OR contains two important copper cofactors (CuA and CuZ centres) that are essential for activity, and in copper-limited environments, N2OR fails to function, contributing to rising levels of atmospheric N2O and a major environmental challenge. Here we report studies of nosX, one of eight genes in the nos cluster of the soil dwelling α-proteobaterium Paraccocus denitrificans. A P. denitrificans ΔnosX deletion mutant failed to reduce N2O under both copper-sufficient and copper-limited conditions, demonstrating that NosX plays an essential role in N2OR activity. N2OR isolated from nosX-deficient cells was found to be unaffected in terms of the assembly of its copper cofactors, and to be active in in vitro assays, indicating that NosX is not required for the maturation of the enzyme; in particular, it plays no part in the assembly of either of the CuA and CuZ centres. Furthermore, quantitative Reverse Transcription PCR (qRT-PCR) studies showed that NosX does not significantly affect the expression of the N2OR-encoding nosZ gene. NosX is a homologue of the FAD-binding protein ApbE from Pseudomonas stutzeri , which functions in the flavinylation of another N2OR accessory protein, NosR. Thus, it is likely that NosX is a system-specific maturation factor of NosR, and so is indirectly involved in maintaining the reaction cycle of N2OR and cellular N2O reduction.


Sign in / Sign up

Export Citation Format

Share Document