Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria

Microbiology ◽  
2003 ◽  
Vol 149 (8) ◽  
pp. 1981-1989 ◽  
Author(s):  
Stéphane Uroz ◽  
Cathy D'Angelo-Picard ◽  
Aurélien Carlier ◽  
Miena Elasri ◽  
Carine Sicot ◽  
...  

Bacteria degrading the quorum-sensing (QS) signal molecule N-hexanoylhomoserine lactone were isolated from a tobacco rhizosphere. Twenty-five isolates degrading this homoserine lactone fell into six groups according to their genomic REP-PCR and rrs PCR-RFLP profiles. Representative strains from each group were identified as members of the genera Pseudomonas, Comamonas, Variovorax and Rhodococcus. All these isolates degraded N-acylhomoserine lactones other than the hexanoic acid derivative, albeit with different specificity and kinetics. One of these isolates, Rhodococcus erythropolis strain W2, was used to quench QS-regulated functions of other microbes. In vitro, W2 strongly interfered with violacein production by Chromobacterium violaceum, and transfer of pathogenicity in Agrobacterium tumefaciens. In planta, R. erythropolis W2 markedly reduced the pathogenicity of Pectobacterium carotovorum subsp. carotovorum in potato tubers. These series of results reveal the diversity of the QS-interfering bacteria in the rhizosphere and demonstrate the validity of targeting QS signal molecules to control pathogens with natural bacterial isolates.

Microbiology ◽  
2005 ◽  
Vol 151 (10) ◽  
pp. 3313-3322 ◽  
Author(s):  
Stéphane Uroz ◽  
Siri Ram Chhabra ◽  
Miguel Cámara ◽  
Paul Williams ◽  
Phil Oger ◽  
...  

The Rhodococcus erythropolis strain W2 has been shown previously to degrade the N-acylhomoserine lactone (AHL) quorum-sensing signal molecule N-hexanoyl-l-homoserine lactone, produced by other bacteria. Data presented here indicate that this Gram-positive bacterium is also capable of using various AHLs as the sole carbon and energy source. The enzymic activities responsible for AHL inactivation were investigated in R. erythropolis cell extracts and in whole cells. R. erythropolis cells rapidly degraded AHLs with 3-oxo substituents but exhibited relatively poor activity against the corresponding unsubstituted AHLs. Investigation of the mechanism(s) by which R. erythropolis cells degraded AHLs revealed that 3-oxo compounds with N-acyl side chains ranging from C8 to C14 were initially converted to their corresponding 3-hydroxy derivatives. This oxidoreductase activity was not specific to 3-oxo-AHLs but also allowed the reduction of compounds such as N-(3-oxo-6-phenylhexanoyl)homoserine lactone (which contains an aromatic acyl chain substituent) and 3-oxododecanamide (which lacks the homoserine lactone ring). It also reduced both the d- and l-isomers of n-(3-oxododecanoyl)-l-homoserine lactone. A second AHL-degrading activity was observed when R. erythropolis cell extracts were incubated with N-(3-oxodecanoyl)-l-homoserine lactone (3O,C10-HSL). This activity was both temperature- and pH-dependent and was characterized as an amidolytic activity by HPLC analysis of the reaction mixture treated with dansyl chloride. This revealed the accumulation of dansylated homoserine lactone, indicating that the 3O,C10-HSL amide had been cleaved to yield homoserine lactone. R. erythropolis is therefore capable of modifying and degrading AHL signal molecules through both oxidoreductase and amidolytic activities.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Surang Chankhamhaengdecha ◽  
Suphatra Hongvijit ◽  
Akkaraphol Srichaisupakit ◽  
Pattra Charnchai ◽  
Watanalai Panbangred

Several Gram-negative pathogenic bacteria employN-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at151.30±3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified asStreptomycesbased on16S  rRNAgene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In anin vitropathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused byPectobacterium carotovorumssp.carotovorumas demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophyticStreptomyces.


2002 ◽  
Vol 28 (1) ◽  
pp. 193-203 ◽  
Author(s):  
Yan Jiang ◽  
Miguel Camara ◽  
Siri Ram Chhabra ◽  
Kim R. Hardie ◽  
Barrie W. Bycroft ◽  
...  

2006 ◽  
Vol 52 (10) ◽  
pp. 1006-1015 ◽  
Author(s):  
S Jafra ◽  
J Przysowa ◽  
R Czajkowski ◽  
A Michta ◽  
P Garbeva ◽  
...  

Quorum sensing plays a role in the regulation of soft rot diseases caused by the plant pathogenic bacterium Pectobacterium carotovorum subsp. carotovorum. The signal molecules involved in quorum sensing in P. carotovorum subsp. carotovorum belong to the group of N-acyl homoserine lactones (AHLs). In our study, we screened bacteria isolated from the potato rhizosphere for the ability to degrade AHLs produced by P. carotovorum subsp. carotovorum. Six isolates able to degrade AHLs were selected for further studies. According to 16S rDNA sequence analysis and fatty acid methyl ester profiling, the isolates belonged to the genera Ochrobactrum, Rhodococcus, Pseudomonas, Bacillus, and Delftia. For the genera Ochrobactrum and Delftia, for the first time AHL-degrading isolates were found. Data presented in this study revealed for the first time that Ochrobactrum sp. strain A44 showed the capacity to inactivate various synthetic AHL molecules; the substituted AHLs were inactivated with a lower efficiency than the unsubstituted AHLs. Compared with the other isolates, A44 was very effective in the degradation of AHLs produced by P. carotovorum subsp. carotovorum. It was verified by polymerase chain reaction, DNA–DNA hybridization, and a lactone ring reconstruction assay that Ochrobactrum sp. strain A44 did not possess AHL lactonase activity. AHL degradation in Ochrobactrum sp. strain A44 occurred intracellularly; it was not found in the culture supernatant. AHL-degrading activity of A44 was thermo sensitive. Experiments in planta revealed that Ochrobactrum sp. strain A44 significantly inhibited the maceration of potato tuber tissue. Since A44 did not produce antibiotics, the attenuation of the decay might be due to the quenching of quorum- sensing-regulated production of pectinolytic enzymes. The strain can potentially serve to control P. carotovorum subsp. carotovorum in potato.Key words: AHL degradation, Ochrobactrum sp., Pectobacterium carotovorum.


2008 ◽  
Vol 74 (5) ◽  
pp. 1357-1366 ◽  
Author(s):  
Stéphane Uroz ◽  
Phil M. Oger ◽  
Emilie Chapelle ◽  
Marie-Thérèse Adeline ◽  
Denis Faure ◽  
...  

ABSTRACT A gene involved in N-acyl homoserine lactone (N-AHSL) degradation was identified by screening a genomic library of Rhodococcus erythropolis strain W2. This gene, named qsdA (for quorum-sensing signal degradation), encodes an N-AHSL lactonase unrelated to the two previously characterized N-AHSL-degrading enzymes, i.e., the lactonase AiiA and the amidohydrolase AiiD. QsdA is related to phosphotriesterases and constitutes the reference of a novel class of N-AHSL degradation enzymes. It confers the ability to inactivate N-AHSLs with an acyl chain ranging from C6 to C14, with or without substitution at carbon 3. Screening of a collection of 15 Rhodococcus strains and strains closely related to this genus clearly highlighted the relationship between the ability to degrade N-AHSLs and the presence of the qsdA gene in Rhodococcus. Bacteria harboring the qsdA gene interfere very efficiently with quorum-sensing-regulated functions, demonstrating that qsdA is a valuable tool for developing quorum-quenching procedures.


2008 ◽  
Vol 115 (11) ◽  
pp. 343-351 ◽  
Author(s):  
Pisake Boontham ◽  
Adrian Robins ◽  
Palanichamy Chandran ◽  
David Pritchard ◽  
Miguel Cámara ◽  
...  

Pathogenic bacteria use quorum-sensing signal molecules to co-ordinate the expression of virulence genes. Animal-based studies have demonstrated the immunomodulatory effects of quorum-sensing signal molecules. In the present study, we have examined the impact of these molecules on normal human immune function in vitro and compared this with immune changes in patients with sepsis where quorum-sensing signal molecules were detected in the sera of patients. Quorum-sensing signal molecules inhibited normal dendritic cell and T-cell activation and proliferation, and down-regulated the expression of co-stimulatory molecules on dendritic cells; in MLDCRs (mixed lymphocyte dendritic cell reactions), secretion of IL (interleukin)-4 and IL-10 was enhanced, but TNF-α (tumour necrosis factor-α), IFN-γ (interferon-γ) and IL-6 was reduced. Quorum-sensing signal molecules induced apoptosis in dendritic cells and CD4+ cells, but not CD8+ cells. Dendritic cells from patients with sepsis were depleted and ex vivo showed defective expression of co-stimulatory molecules and dysfunctional stimulation of allogeneic T-lymphocytes. Enhanced apoptosis of dendritic cells and differential CD4+ Th1/Th2 (T-helper 1/2) cell apoptotic rate, and modified Th1/Th2 cell cytokine profiles in MLDCRs were also demonstrated in patients with sepsis. The pattern of immunological changes in patients with sepsis mirrors the effects of quorum-sensing signal molecules on responses of immune cells from normal individuals in vitro, suggesting that quorum-sensing signal molecules should be investigated further as a cause of immune dysfunction in sepsis.


Microbiology ◽  
2003 ◽  
Vol 149 (6) ◽  
pp. 1541-1550 ◽  
Author(s):  
Sun-Yang Park ◽  
Sang Jun Lee ◽  
Tae-Kwang Oh ◽  
Jong-Won Oh ◽  
Bon-Tag Koo ◽  
...  

Quorum sensing is a signalling mechanism that controls diverse biological functions, including virulence, via N-acylhomoserine lactone (AHL) signal molecules in Gram-negative bacteria. With the aim of isolating strains or enzymes capable of blocking quorum sensing by inactivating AHL, bacteria were screened for AHL degradation by their ability to utilize N-3-oxohexanoyl-l-homoserine lactone (OHHL) as the sole carbon source. Among four isolates, strain IBN110, identified as Arthrobacter sp., was found to grow rapidly on OHHL, and to degrade various AHLs with different lengths and acyl side-chain substitutions. Co-culture of Arthrobacter sp. IBN110 and the plant pathogen Erwinia carotovora significantly reduced both the AHL amount and pectate lyase activity in co-culture medium, suggesting the possibility of applying Arthrobacter sp. IBN110 in the control of AHL-producing pathogenic bacteria. The ahlD gene from Arthrobacter sp. IBN110 encoding the enzyme catalysing AHL degradation was cloned, and found to encode a protein of 273 amino acids. A mass spectrometry analysis showed that AhlD probably hydrolyses the lactone ring of N-3-hexanoyl-l-homoserine lactone, indicating that AhlD is an N-acylhomoserine lactonase (AHLase). A comparison of AhlD with other known AHL-degrading enzymes, Bacillus sp. 240B1 AiiA, a Bacillus thuringiensis subsp. kyushuensis AiiA homologue and Agrobacterium tumefaciens AttM, revealed 25, 26 and 21 % overall identities, respectively, in the deduced amino acid sequences. Although these identities were relatively low, the HXDH≈H≈D motif was conserved in all the AHLases, suggesting that this motif is essential for AHLase activity. From a genome database search based on the conserved motif, putative AhlD-like lactonase genes were found in several other bacteria, and AHL-degrading activities were observed in Klebsiella pneumoniae and Bacillus stearothermophilus. Furthermore, it was verified that ahlK, an ahlD homologue, encodes an AHL-degrading enzyme in K. pneumoniae. Accordingly, the current results suggest the possibility that AhlD-like AHLases could exist in many other micro-organisms.


Microbiology ◽  
2005 ◽  
Vol 151 (11) ◽  
pp. 3589-3602 ◽  
Author(s):  
B. Koch ◽  
T. Liljefors ◽  
T. Persson ◽  
J. Nielsen ◽  
S. Kjelleberg ◽  
...  

The function of LuxR homologues as quorum sensors is mediated by the binding of N-acyl-l-homoserine lactone (AHL) signal molecules to the N-terminal receptor site of the proteins. In this study, site-directed mutagenesis was carried out of the amino acid residues comprising the receptor site of LuxR from Vibrio fischeri, and the ability of the L42A, L42S, Y62F, W66F, D79N, W94D, V109D, V109T and M135A LuxR mutant proteins to activate green fluorescent protein expression from a PluxI promoter was measured. X-ray crystallographic studies of the LuxR homologue TraR indicated that residues Y53 and W57 form hydrogen bonds to the 1-carbonyl group and the ring carbonyl group, respectively, of the cognate AHL signal. Based on the activity and signal specificity of the LuxR mutant proteins, and on molecular modelling, a model is suggested in which Y62 (corresponding to Y53 in TraR) forms a hydrogen bond with the ring carbonyl group rather than the 1-carbonyl group, while W66 (corresponding to W57 in TraR) forms a hydrogen bond to the 1-carbonyl group. This flips the position of the acyl side chain in the LuxR/signal molecule complex compared to the TraR/signal molecule complex. Halogenated furanones from the marine alga Delisea pulchra and the synthetic signal analogue N-(sulfanylacetyl)-l-homoserine lactone can block quorum sensing. The LuxR mutant proteins were insensitive to inhibition by N-(propylsulfanylacetyl)-l-homoserine lactone. In contrast, the mutations had only a minor effect on the sensitivity of the proteins to halogenated furanones, and the data strongly suggest that these compounds do not compete in a ‘classic’ way with N-3-oxohexanoyl-l-homoserine lactone for the binding site. Based on modelling and experimental data it is suggested that these compounds bind in a non-agonist fashion.


2006 ◽  
Vol 74 (3) ◽  
pp. 1673-1682 ◽  
Author(s):  
Charles F. Sio ◽  
Linda G. Otten ◽  
Robbert H. Cool ◽  
Stephen P. Diggle ◽  
Peter G. Braun ◽  
...  

ABSTRACT The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine lactone (HSL) nucleus of AHL-dependent quorum-sensing signal molecules. Analysis showed that the posttranslational processing of the acylase and the hydrolysis reaction type are similar to those of the beta-lactam acylases, strongly suggesting that the PA2385 protein is a member of the N-terminal nucleophile hydrolase superfamily. In a bioassay, the purified acylase was shown to degrade AHLs with side chains ranging in length from 11 to 14 carbons at physiologically relevant low concentrations. The substituent at the 3′ position of the side chain did not affect activity, indicating broad-range AHL quorum-quenching activity. Of the two main AHL signal molecules of P. aeruginosa PAO1, N-butanoyl-l-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL), only 3-oxo-C12-HSL is degraded by the enzyme. Addition of the purified protein to P. aeruginosa PAO1 cultures completely inhibited accumulation of 3-oxo-C12-HSL and production of the signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone and reduced production of the virulence factors elastase and pyocyanin. Similar results were obtained when the PA2385 gene was overexpressed in P. aeruginosa. These results demonstrate that the protein has in situ quorum-quenching activity. The quorum-quenching AHL acylase may enable P. aeruginosa PAO1 to modulate its own quorum-sensing-dependent pathogenic potential and, moreover, offers possibilities for novel antipseudomonal therapies.


Sign in / Sign up

Export Citation Format

Share Document