scholarly journals The manganese-responsive repressor Mur of Rhizobium leguminosarum is a member of the Fur-superfamily that recognizes an unusual operator sequence

Microbiology ◽  
2005 ◽  
Vol 151 (12) ◽  
pp. 4071-4078 ◽  
Author(s):  
Edit Díaz-Mireles ◽  
Margaret Wexler ◽  
Jonathan D. Todd ◽  
Dominico Bellini ◽  
Andrew W. B. Johnston ◽  
...  

The manganese uptake regulator Mur of Rhizobium leguminosarum is a close homologue of the global iron regulatory protein Fur. Mur represses the sitABCD operon, which encodes a Mn2+ transport system, specifically in response to Mn2+ but not Fe2+. In previous work the authors mapped the 5′ ends of two sit operon transcripts, termed TS1 and TS2, which were co-ordinately regulated by Mn2+-Mur, but this paper now shows that only TS1 is a primary transcript. DNase I protection analyses showed that purified Mur bound, with similar affinity, to two sites in the regulatory region of sitABCD, but only when Mn2+ was present in the reaction buffer. These Mn2+-Mur-binding sites, termed MRS1 and MRS2 (Mur-responsive sequence), were closely related in sequence to each other and were separated by 16 bp, spanning the transcription initiation site TS1. The extent of the protected DNA was 34 and 31 bp for MRS1 and MRS2, respectively, which is in accord with other members of the Fur family. The DNA sequences recognized by Mn2+-Mur are wholly different from conventional Fur boxes, but some similarities to a recognition sequence for the Fur regulator from Bradyrhizobium japonicum were noted. Transcription analysis of the R. leguminosarum mur gene showed its expression to be independent of Mn2+-Mur. Thus, Mur is a sequence-specific DNA-binding protein that responds in vitro to manganese, and thus can occlude RNA polymerase access to the sitABCD promoter. Moreover, Mur recognizes a DNA sequence atypical for the Fur superfamily and, like Fur from B. japonicum, defines a new subclass of Fur-like transcriptional regulators.

1991 ◽  
Vol 11 (1) ◽  
pp. 533-543
Author(s):  
R M Mulligan ◽  
P Leon ◽  
V Walbot

Lysed maize mitochondria synthesize RNA in the presence of radioactive nucleoside triphosphates, and this assay was utilized to compare the rates of transcription of seven genes. The rates of incorporation varied over a 14-fold range, with the following rank order: 18S rRNA greater than 26S rRNA greater than atp1 greater than atp6 greater than atp9 greater than cob greater than cox3. The products of run-on transcription hybridized specifically to known transcribed regions and selectively to the antisense DNA strand; thus, the isolated run-on transcription system appears to be an accurate representation of endogenous transcription. Although there were small differences in gene copy abundance, these differences cannot account for the differences in apparent transcription rates; we conclude that promoter strength is the main determinant. Among the protein coding genes, incorporation was greatest for atp1. The most active transcription initiation site of this gene was characterized by hybridization with in vitro-capped RNA and by primer extension analyses. The DNA sequences at this and other transcription initiation sites that we have previously mapped were analyzed with respect to the apparent promoter strengths. We propose that two short sequence elements just upstream of initiation sites form at least a portion of the sequence requirements for a maize mitochondrial promoter. In addition to modulation at the level of transcription, steady-state abundance of protein-coding mRNAs varied over a 20-fold range and did not correlate with transcriptional activity. These observations suggest that posttranscriptional processes are important in the modulation of mRNA abundance.


1990 ◽  
Vol 10 (4) ◽  
pp. 1390-1398
Author(s):  
P J Farnham ◽  
A L Means

The murine dihydrofolate reductase gene is regulated by a bidirectional promoter that lacks a TATA box. To identify the DNA sequences required for dihydrofolate reductase transcription, the activities of various templates were determined by in vitro transcription analysis. Our data indicate that sequences both upstream and downstream of the transcription initiation site modulate the activity of the dihydrofolate reductase promoter. We have focused on two regions downstream of the transcription initiation site that are important in determining the overall efficiency of the promoter. Region 1, which included exon 1 and part of intron 1, could stimulate transcription when placed in either orientation in the normal downstream position and when inserted upstream of the transcription start site. This region could also stimulate transcription in trans when the enhancer was physically separate from the promoter. Deletion of region 2, spanning 46 nucleotides of the 5' untranslated region, reduced transcriptional activity by fivefold. DNase I footprinting reactions identified protein-binding sites in both downstream stimulatory regions. Protein bound to two sites in region 1, both of which contain an inverted CCAAT box. The protein-binding site in the 5' untranslated region has extensive homology to binding sites in promoters that both lack (simian virus 40 late) and contain (adenovirus type 2 major late promoter and c-myc) TATA boxes.


1990 ◽  
Vol 172 (2) ◽  
pp. 609-620 ◽  
Author(s):  
T J Vasicek ◽  
P Leder

We determined the DNA sequence of two large regions of chromosome 22: 33.7 kb containing the C lambda complex; and 5.2 kb 5' of the functionally rearranged lambda gene from the human myeloma, U266. Analysis of these sequences reveals the complete structure of the human C lambda complex and a previously undescribed seventh C lambda region that may encode the Ke+Oz- lambda protein. The seven constant regions are organized in a tandem array, and each is preceded by a single J lambda region. lambda 1, lambda 2, lambda 3, and lambda 7 are apparently active genes, while lambda 4, lambda 5, and lambda 6 are pseudogenes. There are no other J lambda or C lambda regions within a 60-kb region surrounding the C lambda complex; however, there are at least four other lambda-like genes and lambda pseudogenes in the human genome. The lambda genes appear to have evolved via a series of gene duplication events resulting from unequal crossing over or gene conversion between the highly conserved C lambda regions on mispaired chromosomes. The lack of Alu sequences in this large segment of DNA suggests that the C lambda complex resulted from a recent amplification of a smaller Alu-free segment of DNA. Illegitimate recombination between repeated sequences containing lambda 2 and lambda 3 may be responsible for variable amplification of the lambda genes. We also found a 1,377-bp open reading frame (ORF) located on the opposite strand in the region containing lambda 7. While this ORF is flanked by potential RNA splicing signals, we have no evidence that it is part of a functional gene. We also discovered a V lambda pseudogene, called psi V lambda 1, 3 kb upstream of the U266 lambda gene. Using primer extension analysis to map the transcription start in the human lambda gene, we have identified its initiation point 41 bp upstream of the initiation codon. Analysis of the lambda promoter reveals that it contains a TATAA box at position -29 relative to the transcription initiation site and an octamer sequence at -67. Computer analysis of 40 kb of DNA sequences surrounding the human lambda locus has revealed no sequences resembling the kappa or IgH transcriptional enhancers, nor have in vitro analyses for function revealed enhancer activity. A comparison of these results with those obtained in separate studies with transgenic mice point to a complex, developmentally linked mechanism of transcriptional activation.


2009 ◽  
Vol 90 (10) ◽  
pp. 2402-2412 ◽  
Author(s):  
Michael J. Lace ◽  
Yasushi Yamakawa ◽  
Masato Ushikai ◽  
James R. Anson ◽  
Thomas H. Haugen ◽  
...  

Cellular factors that bind to cis sequences in the human papillomavirus 16 (HPV-16) upstream regulatory region (URR) positively and negatively regulate the viral E6 and E7 oncogene promoter, P97. DNase I footprinting has revealed the binding of cellular proteins to two previously undetected cis elements overlapping and 3′ of the transcription-initiation site of the P97 promoter. Mutations within homologous motifs found in both of these cis elements abolished their negative function in vivo and the binding of the same cellular complex in vitro. This factor was identified as YY1 by complex mobility and binding specificity in comparison with vaccinia virus-expressed, purified recombinant YY1 protein and by antigenic reactivity with YY1 antisera. Cis mutations in the ‘initiator’ YY1 site activated the P97 promoter in vivo and in vitro. P97 was also activated threefold in vitro by depletion of endogenous YY1 with wild-type, but not mutant, YY1 oligonucleotides from the IgH kappa E3′ enhancer. Furthermore, increasing concentrations of exogenous, purified recombinant YY1 repressed wild-type P97 transcript levels by up to threefold, but did not influence the P97 promoter mutated in the ‘initiator’ YY1 site. Thus, the promoter-proximal YY1 site was not necessary for correct transcription initiation at the P97 promoter, but was found to be required for downregulation of P97 transcription in vivo and in vitro. In contrast to other viral and cellular promoters, where YY1 is thought to function as a positive transcription-‘initiator’ factor, HPV-16 P97 transcription is downregulated by YY1 from a critical motif overlapping the transcription start site.


1991 ◽  
Vol 11 (1) ◽  
pp. 533-543 ◽  
Author(s):  
R M Mulligan ◽  
P Leon ◽  
V Walbot

Lysed maize mitochondria synthesize RNA in the presence of radioactive nucleoside triphosphates, and this assay was utilized to compare the rates of transcription of seven genes. The rates of incorporation varied over a 14-fold range, with the following rank order: 18S rRNA greater than 26S rRNA greater than atp1 greater than atp6 greater than atp9 greater than cob greater than cox3. The products of run-on transcription hybridized specifically to known transcribed regions and selectively to the antisense DNA strand; thus, the isolated run-on transcription system appears to be an accurate representation of endogenous transcription. Although there were small differences in gene copy abundance, these differences cannot account for the differences in apparent transcription rates; we conclude that promoter strength is the main determinant. Among the protein coding genes, incorporation was greatest for atp1. The most active transcription initiation site of this gene was characterized by hybridization with in vitro-capped RNA and by primer extension analyses. The DNA sequences at this and other transcription initiation sites that we have previously mapped were analyzed with respect to the apparent promoter strengths. We propose that two short sequence elements just upstream of initiation sites form at least a portion of the sequence requirements for a maize mitochondrial promoter. In addition to modulation at the level of transcription, steady-state abundance of protein-coding mRNAs varied over a 20-fold range and did not correlate with transcriptional activity. These observations suggest that posttranscriptional processes are important in the modulation of mRNA abundance.


1990 ◽  
Vol 10 (4) ◽  
pp. 1390-1398 ◽  
Author(s):  
P J Farnham ◽  
A L Means

The murine dihydrofolate reductase gene is regulated by a bidirectional promoter that lacks a TATA box. To identify the DNA sequences required for dihydrofolate reductase transcription, the activities of various templates were determined by in vitro transcription analysis. Our data indicate that sequences both upstream and downstream of the transcription initiation site modulate the activity of the dihydrofolate reductase promoter. We have focused on two regions downstream of the transcription initiation site that are important in determining the overall efficiency of the promoter. Region 1, which included exon 1 and part of intron 1, could stimulate transcription when placed in either orientation in the normal downstream position and when inserted upstream of the transcription start site. This region could also stimulate transcription in trans when the enhancer was physically separate from the promoter. Deletion of region 2, spanning 46 nucleotides of the 5' untranslated region, reduced transcriptional activity by fivefold. DNase I footprinting reactions identified protein-binding sites in both downstream stimulatory regions. Protein bound to two sites in region 1, both of which contain an inverted CCAAT box. The protein-binding site in the 5' untranslated region has extensive homology to binding sites in promoters that both lack (simian virus 40 late) and contain (adenovirus type 2 major late promoter and c-myc) TATA boxes.


1990 ◽  
Vol 10 (6) ◽  
pp. 2832-2839
Author(s):  
A S Ponticelli ◽  
K Struhl

The promoter region of the Saccharomyces cerevisiae his3 gene contains two TATA elements, TC and TR, that direct transcription initiation to two sites designated +1 and +13. On the basis of differences between their nucleotide sequences and their responsiveness to upstream promoter elements, it has previously been proposed that TC and TR promote transcription by different molecular mechanisms. To begin a study of his3 transcription in vitro, we used S. cerevisiae nuclear extracts together with various DNA templates and transcriptional activator proteins that have been characterized in vivo. We demonstrated accurate transcription initiation in vitro at the sites used in vivo, transcriptional activation by GCN4, and activation by a GAL4 derivative on various gal-his3 hybrid promoters. In all cases, transcription stimulation was dependent on the presence of an acidic activation region in the activator protein. In addition, analysis of promoters containing a variety of TR derivatives indicated that the level of transcription in vitro was directly related to the level achieved in vivo. The results demonstrated that the in vitro system accurately reproduced all known aspects of in vivo his3 transcription that depend on the TR element. However, in striking contrast to his3 transcription in vivo, transcription in vitro yielded approximately 20 times more of the +13 transcript than the +1 transcript. This result was not due to inability of the +1 initiation site to be efficiently utilized in vitro, but rather it reflects the lack of TC function in vitro. The results support the idea that TC and TR mediate transcription from the wild-type promoter by distinct mechanisms.


1993 ◽  
Vol 13 (7) ◽  
pp. 3841-3849
Author(s):  
B Zenzie-Gregory ◽  
A Khachi ◽  
I P Garraway ◽  
S T Smale

Promoters containing Sp1 binding sites and an initiator element but lacking a TATA box direct high levels of accurate transcription initiation by using a mechanism that requires the TATA-binding protein (TBP). We have begun to address the role of TBP during transcription from Sp1-initiator promoters by varying the nucleotide sequence between -14 and -33 relative to the start site. With each of several promoters containing different upstream sequences, we detected accurate transcription both in vitro and in vivo, but the promoter strengths varied widely, particularly with the in vitro assay. The variable promoter activities correlated with, but were not proportional to, the abilities of the upstream sequences to function as TATA boxes, as assessed by multiple criteria. These results confirm that accurate transcription can proceed in the presence of an initiator, regardless of the sequence present in the -30 region. However, the results reveal a role for this upstream region, most consistent with a model in which initiator-mediated transcription requires binding of TBP to the upstream DNA in the absence of a specific recognition sequence. Moreover, in vivo it appears that the promoter strength is modulated less severely by altering the -30 sequence, consistent with a previous suggestion that TBP is not rate limiting in vivo for TATA-less promoters. Taken together, these results suggest that variations in the structure of a core promoter might alter the rate-limiting step for transcription initiation and thereby alter the potential modes of transcriptional regulation, without severely changing the pathway used to assemble a functional preinitiation complex.


1995 ◽  
Vol 15 (6) ◽  
pp. 3442-3449 ◽  
Author(s):  
M S Donoviel ◽  
N Kacherovsky ◽  
E T Young

The alcohol dehydrogenase 2 (ADH2) gene of Saccharomyces cerevisiae is under stringent glucose repression. Two cis-acting upstream activation sequences (UAS) that function synergistically in the derepression of ADH2 gene expression have been identified. UAS1 is the binding site for the transcriptional regulator Adr1p. UAS2 has been shown to be important for ADH2 expression and confers glucose-regulated, ADR1-independent activity to a heterologous reporter gene. An analysis of point mutations within UAS2, in the context of the entire ADH2 upstream regulatory region, showed that the specific sequence of UAS2 is important for efficient derepression of ADH2, as would be expected if UAS2 were the binding site for a transcriptional regulatory protein. In the context of the ADH2 upstream regulatory region, including UAS1, working in concert with the ADH2 basal promoter elements, UAS2-dependent gene activation was dependent on orientation, copy number, and helix phase. Multimerization of UAS2, or its presence in reversed orientation, resulted in a decrease in ADH2 expression. In contrast, UAS2-dependent expression of a reporter gene containing the ADH2 basal promoter and coding sequence was enhanced by multimerization of UAS2 and was independent of UAS2 orientation. The reduced expression caused by multimerization of UAS2 in the native promoter was observed only in the presence of ADR1. Inhibition of UAS2-dependent gene expression by Adr1p was also observed with a UAS2-dependent ADH2 reporter gene. This inhibition increased with ADR1 copy number and required the DNA-binding activity of Adr1p. Specific but low-affinity binding of Adr1p to UAS2 in vitro was demonstrated, suggesting that the inhibition of UAS2-dependent gene expression observed in vivo could be a direct effect due to Adr1p binding to UAS2.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 3067-3077 ◽  
Author(s):  
J.S. Margolis ◽  
M.L. Borowsky ◽  
E. Steingrimsson ◽  
C.W. Shim ◽  
J.A. Lengyel ◽  
...  

The gap gene hunchback (hb) is required for the formation and segmentation of two regions of the Drosophila embryo, a broad anterior domain and a narrow posterior domain. Accumulation of hb transcript in the posterior of the embryo occurs in two phases, an initial cap covering the terminal 15% of the embryo followed by a stripe at the anterior edge of this region. By in situ hybridization with transcript-specific probes, we show that the cap is composed only of mRNA from the distal transcription initiation site (P1), while the later posterior stripe is composed of mRNA from both the distal and proximal (P2) transcription initiation sites. Using a series of genomic rescue constructs and promoter-lacZ fusion genes, we define a 1.4 kb fragment of the hb upstream region that is both necessary and sufficient for posterior expression. Sequences within this fragment mediate regulation by the terminal gap genes tailless (tll) and a huckebein, which direct the formation of the posterior hb stripe. We show that the tll protein binds in vitro to specific sites within the 1.4 kb posterior enhancer region, providing the first direct evidence for activation of gene expression by tll. We propose a model in which the anterior border of the posterior hb stripe is determined by tll concentration in a manner analogous to the activation of anterior hb expression by bicoid.


Sign in / Sign up

Export Citation Format

Share Document