scholarly journals Functional analysis of the Bunyamwera orthobunyavirus Gc glycoprotein

2009 ◽  
Vol 90 (10) ◽  
pp. 2483-2492 ◽  
Author(s):  
Xiaohong Shi ◽  
Josthna Goli ◽  
Gordon Clark ◽  
Kristina Brauburger ◽  
Richard M. Elliott

The virion glycoproteins Gn and Gc of Bunyamwera orthobunyavirus (family Bunyaviridae) are encoded by the M RNA genome segment and have roles in both viral attachment and membrane fusion. To investigate further the structure and function of the Gc protein in viral replication, we generated 12 mutants that contain truncations from the N terminus. The effects of these deletions were analysed with regard to Golgi targeting, low pH-dependent membrane fusion, infectious virus-like particle (VLP) formation and virus infectivity. Our results show that the N-terminal half (453 residues) of the Gc ectodomain (909 residues in total) is dispensable for Golgi trafficking and cell fusion. However, deletions in this region resulted in a significant reduction in VLP formation. Four mutant viruses that contained N-terminal deletions in their Gc proteins were rescued, and found to be attenuated to different degrees in BHK-21 cells. Taken together, our data indicate that the N-terminal half of the Gc ectodomain is dispensable for replication in cell culture, whereas the C-terminal half is required to mediate cell fusion. A model for the domain structure of the Gc ectodomain is proposed.

2008 ◽  
Vol 82 (7) ◽  
pp. 3329-3341 ◽  
Author(s):  
Zhaofei Li ◽  
Gary W. Blissard

ABSTRACT GP64, the major envelope glycoprotein of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) budded virion, is important for host cell receptor binding and mediates low-pH-triggered membrane fusion during entry by endocytosis. In the current study, we examined the functional role of the AcMNPV GP64 transmembrane (TM) domain by replacing the 23-amino-acid GP64 TM domain with corresponding TM domain sequences from a range of viral and cellular type I membrane proteins, including Orgyia pseudotsugata MNPV (OpMNPV) GP64 and F, thogotovirus GP75, Lymantria dispar MNPV (LdMNPV) F, human immunodeficiency virus type 1 (HIV-1) GP41, human CD4 and glycophorin A (GpA), and influenza virus hemagglutinin (HA), and with a glycosylphosphatidylinositol (GPI) anchor addition sequence. In transient expression experiments with Sf9 cells, chimeric GP64 proteins containing either a GPI anchor or TM domains from LdMNPV F or HIV-1 GP41 failed to localize to the cell surface and thus appear to be incompatible with either GP64 structure or cell transport. All of the mutant constructs detected at the cell surface mediated hemifusion (outer leaflet merger) upon low-pH treatment, but only those containing TM domains from CD4, GpA, OpMNPV GP64, and thogotovirus GP75 mediated pore formation and complete membrane fusion activity. This supports a model in which partial fusion (hemifusion) proceeds by a mechanism that is independent of the TM domain and the TM domain participates in the enlargement or expansion of fusion pores after hemifusion. GP64 proteins containing heterologous TM domains mediated virion budding with dramatically differing levels of efficiency. In addition, chimeric GP64 proteins containing TM domains from CD4, GpA, HA, and OpMNPV F were incorporated into budded virions but were unable to rescue the infectivity of a gp64 null virus, whereas those with TM domains from OpMNPV GP64 and thogotovirus GP75 rescued infectivity. These results show that in addition to its basic role in membrane anchoring, the GP64 TM domain is critically important for GP64 trafficking, membrane fusion, virion budding, and virus infectivity. These critical functions were replaced only by TM domains from related viral membrane proteins.


1996 ◽  
Vol 134 (4) ◽  
pp. 863-872 ◽  
Author(s):  
M Kielian ◽  
M R Klimjack ◽  
S Ghosh ◽  
W A Duffus

Semliki Forest virus (SFV) infects cells by an acid-dependent membrane fusion reaction catalyzed by the virus spike protein, a complex containing E1 and E2 transmembrane subunits. E1 carries the putative virus fusion peptide, and mutations in this domain of the spike protein were previously shown to shift the pH threshold of cell-cell fusion (G91A), or block cell-cell fusion (G91D). We have used an SFV infectious clone to characterize virus particles containing these mutations. In keeping with the previous spike protein results, G91A virus showed limited secondary infection and an acid-shifted fusion threshold, while G91D virus was noninfectious and inactive in both cell-cell and virus-liposome fusion assays. During the low pH- induced SFV fusion reaction, the E1 subunit exposes new epitopes for monoclonal antibody (mAb) binding and forms an SDS-resistant homotrimer, the virus associates hydrophobically with the target membrane, and fusion of the virus and target membranes occurs. After low pH treatment, G91A spike proteins were shown to bind conformation-specific mAbs, associate with target liposome membranes, and form the E1 homotrimer. However, both G91A membrane association and homotrimer formation had an acid-shifted pH threshold and reduced efficiency compared to wt virus. In contrast, studies of the fusion-defective G91D mutant showed that the virus efficiently reacted with low pH as assayed by mAb binding and liposome association, but was essentially inactive in homotrimer formation. These results suggest that the G91D mutant is noninfectious due to a block in a late step in membrane fusion, separate from the initial reaction to low pH and interaction with the target membrane, and involving the lack of efficient formation of the E1 homotrimer.


2015 ◽  
Vol 89 (14) ◽  
pp. 7235-7247 ◽  
Author(s):  
Birgit G. Bradel-Tretheway ◽  
Qian Liu ◽  
Jacquelyn A. Stone ◽  
Samantha McInally ◽  
Hector C. Aguilar

ABSTRACTHendra virus (HeV) and Nipah virus (NiV) are reportedly the most deadly pathogens within theParamyxoviridaefamily. These two viruses bind the cellular entry receptors ephrin B2 and/or ephrin B3 via the viral attachment glycoprotein G, and the concerted efforts of G and the viral fusion glycoprotein F result in membrane fusion. Membrane fusion is essential for viral entry into host cells and for cell-cell fusion, a hallmark of the disease pathobiology. HeV G is heavily N-glycosylated, but the functions of the N-glycans remain unknown. We disrupted eight predicted N-glycosylation sites in HeV G by conservative mutations (Asn to Gln) and found that six out of eight sites were actually glycosylated (G2 to G7); one in the stalk (G2) and five in the globular head domain (G3 to G7). We then tested the roles of individual and combined HeV G N-glycan mutants and found functions in the modulation of shielding against neutralizing antibodies, intracellular transport, G-F interactions, cell-cell fusion, and viral entry. Between the highly conserved HeV and NiV G glycoproteins, similar trends in the effects of N-glycans on protein functions were observed, with differences in the levels at which some N-glycan mutants affected such functions. While the N-glycan in the stalk domain (G2) had roles that were highly conserved between HeV and NiV G, individual N-glycans in the head affected the levels of several protein functions differently. Our findings are discussed in the context of their contributions to our understanding of HeV and NiV pathogenesis and immune responses.IMPORTANCEViral envelope glycoproteins are important for viral pathogenicity and immune evasion. N-glycan shielding is one mechanism by which immune evasion can be achieved. In paramyxoviruses, viral attachment and membrane fusion are governed by the close interaction of the attachment proteins H/HN/G and the fusion protein F. In this study, we show that the attachment glycoprotein G of Hendra virus (HeV), a deadly paramyxovirus, is N-glycosylated at six sites (G2 to G7) and that most of these sites have important roles in viral entry, cell-cell fusion, G-F interactions, G oligomerization, and immune evasion. Overall, we found that the N-glycan in the stalk domain (G2) had roles that were very conserved between HeV G and the closely related Nipah virus G, whereas individual N-glycans in the head quantitatively modulated several protein functions differently between the two viruses.


1997 ◽  
Vol 136 (1) ◽  
pp. 81-93 ◽  
Author(s):  
Leonid V. Chernomordik ◽  
Eugenia Leikina ◽  
Vadim Frolov ◽  
Peter Bronk ◽  
Joshua Zimmerberg

While the specificity and timing of membrane fusion in diverse physiological reactions, including virus–cell fusion, is determined by proteins, fusion always involves the merger of membrane lipid bilayers. We have isolated a lipid-dependent stage of cell–cell fusion mediated by influenza hemagglutinin and triggered by cell exposure to mildly acidic pH. This stage preceded actual membrane merger and fusion pore formation but was subsequent to a low pH–induced change in hemagglutinin conformation that is required for fusion. A low pH conformation of hemagglutinin was required to achieve this lipid-dependent stage and also, downstream of it, to drive fusion to completion. The lower the pH of the medium applied to trigger fusion and, thus, the more hemagglutinin molecules activated, the less profound was the dependence of fusion on lipids. Membrane-incorporated lipids affected fusion in a manner that correlated with their dynamic molecular shape, a characteristic that determines a lipid monolayer's propensity to bend in different directions. The lipid sensitivity of this stage, i.e., inhibition of fusion by inverted cone–shaped lysophosphatidylcholine and promotion by cone-shaped oleic acid, was consistent with the stalk hypothesis of fusion, suggesting that fusion proteins begin membrane merger by promoting the formation of a bent, lipid-involving, stalk intermediate.


2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Birgit G. Bradel-Tretheway ◽  
J. Lizbeth Reyes Zamora ◽  
Jacquelyn A. Stone ◽  
Qian Liu ◽  
Jenny Li ◽  
...  

ABSTRACTNipah and Hendra viruses (NiV and HeV) exhibit high lethality in humans and are biosafety level 4 (BSL-4) paramyxoviruses in the growing genusHenipavirus. The attachment (G) and fusion (F) envelope glycoproteins are both required for viral entry into cells and for cell-cell fusion, which is pathognomonic of henipaviral infections. Here, we compared the fusogenic capacities between homologous and heterologous pairs of NiV and HeV glycoproteins. Importantly, to accurately measure their fusogenic capacities, as these depend on glycoprotein cell surface expression (CSE) levels, we inserted identical extracellular tags to both fusion (FLAG tags) or both attachment (hemagglutinin [HA] tags) glycoproteins. Importantly, these tags were placed in extracellular sites where they did not affect glycoprotein expression or function. NiV and HeV glycoproteins induced comparable levels of homologous HEK293T cell-cell fusion. Surprisingly, however, while the heterologous NiV F/HeV G (NF/HG) combination yielded a hypofusogenic phenotype, the heterologous HeV F/NiV G (HF/NG) combination yielded a hyperfusogenic phenotype. Pseudotyped viral entry levels primarily corroborated the fusogenic phenotypes of the glycoprotein pairs analyzed. Furthermore, we constructed G and F chimeras that allowed us to map the overall regions in G and F that contributed to these hyperfusogenic or hypofusogenic phenotypes. Importantly, the fusogenic phenotypes of the glycoprotein combinations negatively correlated with the avidities of F-G interactions, supporting the F/G dissociation model of henipavirus-induced membrane fusion, even in the context of heterologous glycoprotein pairs.IMPORTANCEThe NiV and HeV henipaviruses are BSL-4 pathogens transmitted from bats. NiV and HeV often lead to human death and animal diseases. The formation of multinucleated cells (syncytia) is a hallmark of henipaviral infections and is caused by fusion of cells coordinated by interactions of the viral attachment (G) and fusion (F) glycoproteins. We found via various assays that viral entry and syncytium formation depend on the viral origin of the glycoproteins, with HeV F and NiV G promoting higher membrane fusion levels than their counterparts. This is important knowledge, since both viruses use the same bat vector species and potential coinfections of these or subsequent hosts may alter the outcome of disease.


2008 ◽  
Vol 82 (17) ◽  
pp. 8922-8926 ◽  
Author(s):  
Feifei Yin ◽  
Manli Wang ◽  
Ying Tan ◽  
Fei Deng ◽  
Just M. Vlak ◽  
...  

ABSTRACT The envelope fusion protein F of Plutella xylostella granulovirus is a computational analogue of the GP64 envelope fusion protein of Autographa californica nucleopolyhedrovirus (AcMNPV). Granulovirus (GV) F proteins were thought to be unable to functionally replace GP64 in the AcMNPV pseudotyping system. In the present study the F protein of Agrotis segetum GV (AgseGV) was identified experimentally as the first functional GP64 analogue from GVs. AgseF can rescue virion propagation and infectivity of gp64-null AcMNPV. The AgseF-pseudotyped AcMNPV also induced syncytium formation as a consequence of low-pH-induced membrane fusion.


2004 ◽  
Vol 78 (14) ◽  
pp. 7329-7343 ◽  
Author(s):  
Jeffrey M. Melancon ◽  
Timothy P. Foster ◽  
Konstantin G. Kousoulas

ABSTRACT The herpes simplex virus type 1 UL20 protein (UL20p) is an important determinant for cytoplasmic virion morphogenesis and virus-induced cell fusion. To delineate the functional domains of the UL20 protein, we generated a panel of single and multiple (cluster) alanine substitutions as well as UL20p carboxyl-terminal truncations. The UL20 mutant genes could be broadly categorized into four main groups: Group I UL20 mutant genes complemented for both virus production and virus-induced cell fusion; Group II UL20 mutant genes did not complement for either virus-induced cell fusion or infectious virus production; Group III UL20 mutant genes complemented for virus-induced cell fusion to variable extents but exhibited substantially decreased ability to complement UL20-null infectious virus production; Group IV mutant genes complemented for infectious virus production but had variable effects on virus-induced cell fusion; this group included two mutants that efficiently complemented for gBsyn3, but not for gKsyn1, virus-induced cell fusion. In addition, certain recombinant viruses with mutations in either the amino or carboxyl termini of UL20p produced partially syncytial plaques on Vero cells in the absence of any other virally encoded syncytial mutations. These studies indicated that the amino and carboxyl termini of UL20p contained domains that functioned both in infectious virus production and virus-induced cell fusion. Moreover, the data suggested that the UL20p's role in virus-induced cell fusion can be functionally separated from its role in cytoplasmic virion morphogenesis and that certain UL20p domains that function in gB-syn3 virus-induced cell fusion are distinct from those functioning in gKsyn1 virus-induced cell fusion.


2003 ◽  
Vol 77 (9) ◽  
pp. 5192-5200 ◽  
Author(s):  
Chisu Song ◽  
Susan R. Dubay ◽  
Eric Hunter

ABSTRACT Mason-Pfizer monkey virus (M-PMV) encodes a transmembrane (TM) glycoprotein with a 38-amino-acid-long cytoplasmic domain. After the release of the immature virus, a viral protease-mediated cleavage occurs within the cytoplasmic domain, resulting in the loss of 17 amino acids from the carboxy terminus. This maturational cleavage occurs between a histidine at position 21 and a tyrosine at position 22 in the cytoplasmic domain of the TM protein. We have demonstrated previously that a truncated TM glycoprotein with a 21-amino-acid-long cytoplasmic tail showed enhanced fusogenicity but could not be incorporated into virions. These results suggest that postassembly cleavage of the cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. To investigate the contribution of tyrosine residues to the function of the glycoprotein complex and virus replication, we have introduced amino acid substitutions into two tyrosine residues found in the cytoplasmic domain. The effects of these mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of tyrosine 34 to alanine had little effect on glycoprotein function. In contrast, substitutions at tyrosine 22 modulated fusion activity in either a positive or negative manner, depending on the substituting amino acid. Moreover, any nonaromatic substitution at this position blocked glycoprotein incorporation into virions and abolished infectivity. These results demonstrate that M-PMV employs a tyrosine signal for the selective incorporation of glycoprotein into budding virions. Antibody uptake studies show that tyrosine 22 is part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein that can also be positively and negatively influenced by changes at this site.


Sign in / Sign up

Export Citation Format

Share Document