scholarly journals IE1 and hr facilitate the localization of Bombyx mori nucleopolyhedrovirus ORF8 to specific nuclear sites

2005 ◽  
Vol 86 (11) ◽  
pp. 3031-3038 ◽  
Author(s):  
WonKyung Kang ◽  
Noriko Imai ◽  
Yu Kawasaki ◽  
Toshihiro Nagamine ◽  
Shogo Matsumoto

The Bombyx mori nucleopolyhedrovirus (BmNPV) ORF8 protein has previously been reported to colocalize with IE1 to specific nuclear sites during infection. Transient expression of green fluorescent protein (GFP)-fused ORF8 showed the protein to have cytoplasmic localization, but following BmNPV infection the protein formed foci, suggesting that ORF8 requires some other viral factor(s) for this. Therefore, interacting factors were looked for using the yeast two-hybrid system and IE1 was identified. We mapped the interacting region of ORF8 using a yeast two-hybrid assay. An N-terminal region (residues 1–110) containing a predicted coiled-coil domain interacted with IE1, while a truncated N-terminal region (residues 1–78) that lacks this domain did not. In addition, a protein with a complete deletion of the N-terminal region failed to interact with IE1. These results suggest that the ORF8 N-terminal region containing the coiled-coil domain is required for the interaction with IE1. Next, whether IE1 plays a role in ORF8 localization was investigated. In the presence of IE1, GFP-ORF8 localized to the nucleus. In addition, cotransfection with a plasmid expressing IE1 and a plasmid containing the hr3 element resulted in nuclear foci formation. A GFP-fused ORF8 mutant protein containing the coiled-coil domain, previously shown to interact with IE1, also formed nuclear foci in the presence of IE1 and hr3. However, ORF8 mutant proteins that did not interact with IE1 failed to form nuclear foci. In contrast to wild-type IE1, focus formation was not observed for an IE1 mutant protein that was deficient in hr binding. These results suggest that IE1 and hr facilitate the localization of BmNPV ORF8 to specific nuclear sites.

2000 ◽  
Vol 113 (11) ◽  
pp. 1939-1950 ◽  
Author(s):  
D.A. Starr ◽  
R. Saffery ◽  
Z. Li ◽  
A.E. Simpson ◽  
K.H. Choo ◽  
...  

HZwint-1 (Human ZW10 interacting protein-1) was identified in a yeast two hybrid screen for proteins that interact with HZW10. HZwint-1 cDNA encodes a 43 kDa protein predicted to contain an extended coiled-coil domain. Immunofluorescence studies with sera raised against HZwint-1 protein revealed strong kinetochore staining in nocodazole-arrested chromosome spreads. This signal co-localizes at the kinetochore with HZW10, at a position slightly outside of the central part of the centromere as revealed by staining with a CREST serum. The kinetochore localization of HZwint-1 has been confirmed by following GFP fluorescence in HeLa cells transiently transfected with a plasmid encoding a GFP/HZwint-1 fusion protein. In cycling HeLa cells, HZwint-1 localizes to the kinetochore of prophase HeLa cells prior to HZW10 localization, and remains at the kinetochore until late in anaphase. This localization pattern, combined with the two-hybrid results, suggests that HZwint-1 may play a role in targeting HZW10 to the kinetochore at prometaphase. HZwint-1 was also found to localize to neocentromeres and to the active centromere of dicentric chromosomes. HZwint-1 thus appears to associate with all active centromeres, implying that it plays an important role in correct centromere function.


2005 ◽  
Vol 86 (3) ◽  
pp. 637-644 ◽  
Author(s):  
Noriko Imai ◽  
Shogo Matsumoto ◽  
WonKyung Kang

Baculovirus IE2 functions as a transregulator and is also involved in viral DNA replication. However, the mechanism for these functions remains unknown. It has previously been reported that Bombyx mori nucleopolyhedrovirus (BmNPV) IE2 has a ubiquitin ligase activity that is dependent on the RING finger domain and that IE2 can oligomerize through its C-terminal coiled-coil region. Here, confocal microscopy analysis demonstrated that IE2 formed nuclear foci only during the early phase of infection (2–6 h post-infection). Therefore, it was determined whether the IE2 functional regions described above could affect this characteristic distribution. Transient expression of ie2 also showed focus formation, suggesting that IE2 does not require any other viral factors. IE2 mutants lacking the C-terminal coiled-coil region did not form foci, while a mutant of the RING finger domain showed nuclear foci that appeared larger and brighter than those formed by wild-type IE2. In addition, IE2 exhibited enlarged foci in infected cells following treatment with a proteasome inhibitor, suggesting that foci enlargement resulted from accumulation of IE2 due to inhibition of the ubiquitin-proteasome pathway. These results suggest that BmNPV IE2 oligomerization and ubiquitin ligase activity functional domains regulate nuclear foci formation.


2005 ◽  
Vol 387 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Teruaki OKU ◽  
Saotomo ITOH ◽  
Rie ISHII ◽  
Kensuke SUZUKI ◽  
William M. NAUSEEF ◽  
...  

The actin-binding protein p57/coronin-1, a member of the coronin protein family, is selectively expressed in immune cells, and has been implicated in leucocyte migration and phagocytosis by virtue of its interaction with F-actin (filamentous actin). We previously identified two sites in the N-terminal region of p57/coronin-1 by which it binds actin, and in the present study we examine the role of the leucine zipper motif located in the C-terminal coiled-coil domain in mediating the homotypic association of p57/coronin-1. Recombinant p57/coronin-1 protein in solution formed a homodimer, as analysed by Superose 12 column chromatography and by sucrose density gradient centrifugation. In vivo, a truncated form consisting of the C-terminal coiled-coil domain co-precipitated with full-length p57/coronin-1 when both were co-expressed in COS-1 cells. A chimaeric construct composed of the C-terminal domain of p57/coronin-1 (which lacks the actin-binding sites) fused with green fluorescent protein co-localized with cortical F-actin-rich regions in COS-1 cells only when full-length p57/coronin-1 was expressed simultaneously in the cells, suggesting that the C-terminal region is required for the homotypic association of p57/coronin-1. Furthermore, p57LZ, a polypeptide consisting of the C-terminal 90 amino acid residues of p57/coronin-1, was sufficient for dimerization. When two leucine residues out of the four that constitute the leucine zipper structure in p57LZ or full-length p57 were replaced with alanine residues, the mutants failed to form homodimers. Taken together, these results demonstrate that p57/coronin-1 forms homodimers, that the association is mediated by the leucine zipper structure in the C-terminal region, and that it plays a role in the cross-linking of F-actin in the cell.


2007 ◽  
Vol 20 (2) ◽  
pp. 168-177 ◽  
Author(s):  
Viola A. Manning ◽  
Linda K. Hardison ◽  
Lynda M. Ciuffetti

Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces host-selective toxins that are determinants of pathogenicity or virulence. Ptr ToxA (ToxA), a proteina-ceous toxin produced by P. tritici-repentis, is a necrotizing toxin produced by the most common races isolated from infected wheat. Recent studies have shown that ToxA is internalized into the mesophyll cells and localizes to chloroplasts of sensitive wheat cultivars only. We employed a yeast two-hybrid screen in an effort to determine plant proteins that interact with ToxA and found that ToxA interacts with a chloroplast protein, designated ToxA binding protein 1 (ToxABP1). ToxABP1 contains a lysine-rich region within a coiled-coil domain that is similar to phosphotidyl-inositol binding sites present in animal proteins involved in endocytosis. In both ToxA-sensitive and -insensitive cultivars, ToxABP1 is expressed at similar levels and encodes an identical protein. ToxABP1 protein is present in both chloroplast membranes and chloroplast stroma. ToxA appears to interact primarily with a multimeric complex of ToxABP1 protein associated with the chloroplast membrane.


2006 ◽  
Vol 53 (1) ◽  
pp. 145-148 ◽  
Author(s):  
Cristina Polinsky ◽  
Chanelle Houston ◽  
Jaynine Vado ◽  
Azizahmed Shaikh ◽  
Rebecca E Kohn

UNC-13 protein participates in regulating neurotransmitter release. In Drosophila melanogaster, proteasomal degradation controls UNC-13 levels at synapses. Function of the amino-terminal region of a 207 kDa form of Caenorhabditis elegans UNC-13 is unknown. Yeast two-hybrid and secondary yeast assays identified an F-box protein that interacts with this amino-terminal region. As F-box proteins bind proteins targeted for proteasomal degradation, this protein may participate in degrading a subset of UNC-13 proteins, suggesting that different forms of UNC-13 are regulated differently. Yeast assays also identified an exonuclease, a predicted splicing factor, and a protein with coiled-coil domains, indicating that UNC-13 may affect RNA function.


2003 ◽  
Vol 374 (2) ◽  
pp. 497-503 ◽  
Author(s):  
Young Mi LEE ◽  
Wankee KIM

A large portion of human kinesin superfamily protein member 4 (KIF4) is associated with the nuclear matrix during the interphase, while a small portion is found in the cytoplasm. During mitosis, it is associated with chromosomes throughout the entire process. In the present study, we identified a protein that interacts with KIF4 using a yeast two-hybrid system, co-immunoprecipitation and co-fractionation. This protein is BRCA2-associated factor 35 (BRAF35) containing a non-specific DNA binding high-mobility-group domain and a kinesin-like coiled-coil domain. It appeared that the interaction between the two proteins occurs through their respective α-helical coiled-coil domains. The co-fractionation experiment revealed that KIF4 and BRAF35 were present in a complex of approx. 540 kDa. The composition and biological significance of this complex should be studied further.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1159-1168 ◽  
Author(s):  
Sheila Landry ◽  
Charles S Hoffman

AbstractFission yeast adenylate cyclase, like mammalian adenylate cyclases, is regulated by a heterotrimeric G protein. The gpa2 Gα and git5 Gβ are both required for glucose-triggered cAMP signaling. The git5 Gβ is a unique member of the Gβ family in that it lacks an amino-terminal coiled-coil domain shown to be essential for mammalian Gβ folding and interaction with Gγ subunits. Using a git5 bait in a two-hybrid screen, we identified the git11 Gγ gene. Co-immunoprecipitation studies confirm the composition of this Gβγ dimer. Cells deleted for git11 are defective in glucose repression of both fbp1 transcription and sexual development, resembling cells lacking either the gpa2 Gα or the git5 Gβ. Overexpression of the gpa2 Gα partially suppresses loss of either the git5 Gβ or the git11 Gγ, while mutational activation of the Gα fully suppresses loss of either Gβ or Gγ. Deletion of gpa2 (Gα), git5 (Gβ), or git11 (Gγ) confer quantitatively distinct effects on fbp1 repression, indicating that the gpa2 Gα subunit remains partially active in the absence of the Gβγ dimer and that the git5 Gβ subunit remains partially active in the absence of the git11 Gγ subunit. The addition of the CAAX box from the git11 Gγ to the carboxy-terminus of the git5 Gβ partially suppresses the loss of the Gγ. Thus the Gγ in this system is presumably required for localization of the Gβγ dimer but not for folding of the Gβ subunit. In mammalian cells, the essential roles of the Gβ amino-terminal coiled-coil domains and Gγ partners in Gβ folding may therefore reflect a mechanism used by cells that express multiple forms of both Gβ and Gγ subunits to regulate the composition and activity of its G proteins.


Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2055-2068 ◽  
Author(s):  
Daniel V. Zurawski ◽  
Murry A. Stein

SseA, a key Salmonella virulence determinant, is a small, basic pI protein encoded within the Salmonella pathogenicity island 2 and serves as a type III secretion system chaperone for SseB and SseD. Both SseA partners are subunits of the surface-localized translocon module that delivers effectors into the host cell; SseB is predicted to compose the translocon sheath and SseD is a putative translocon pore subunit. In this study, SseA molecular interactions with its partners were characterized further. Yeast two-hybrid screens indicate that SseA binding requires a C-terminal domain within both partners. An additional central domain within SseD was found to influence binding. The SseA-binding region within SseB was found to encompass a predicted amphipathic helix of a type participating in coiled-coil interactions that are implicated in the assembly of translocon sheaths. Deletions that impinge upon this putative coiled-coiled domain prevent SseA binding, suggesting that SseA occupies a portion of the coiled-coil. SseA occupancy of this motif is envisioned to be sufficient to prevent premature SseB self-association inside bacteria. Domain mapping on the chaperone was also performed. A deletion of the SseA N-terminus, or site-directed mutations within this region, allowed stabilization of SseB, but its export was disrupted. Therefore, the N-terminus of SseA provides a function that is essential for SseB export, but dispensable for partner binding and stabilization.


2005 ◽  
Vol 79 (18) ◽  
pp. 11824-11836 ◽  
Author(s):  
Mingzhou Chen ◽  
Jean-Claude Cortay ◽  
Ian R. Logan ◽  
Vasileia Sapountzi ◽  
Craig N. Robson ◽  
...  

ABSTRACT Using a C-terminal domain (PCT) of the measles virus (MV) phosphoprotein (P protein) as bait in a yeast two-hybrid screen, a cDNA identical to the recently described human p53-induced-RING-H2 (hPIRH2) cDNA was isolated. A glutathione S-transferase-hPIRH2 fusion protein expressed in bacteria was able to pull down P protein when mixed with an extract from P-expressing HeLa cells in vitro, and myc-tagged hPIRH2 could be reciprocally coimmunoprecipitated with MV P protein from human cells. Additionally, immunoprecipitation experiments demonstrated that hPIRH2-myc, MV P, and nucleocapsid (N) proteins form a ternary complex. The hPIRH2 binding site was mapped to the C-terminal X domain region of the P protein by using a yeast two-hybrid assay. The PCT binding site was mapped on hPIRH2 by using a novel yeast two-hybrid tagged PCR approach and by coimmunoprecipitation of hPIRH2 cysteine mutants and mouse/human PIRH2 chimeras. The hPIRH2 C terminus could mediate the interaction with MV P which was favored by the RING-H2 motif. When coexpressed with an enhanced green fluorescent protein-tagged hPIRH2 protein, MV P alone or in a complex with MV N was able to redistribute hPIRH2 to outside the nucleus, within intracellular aggregates. Finally, MV P efficiently stabilized hPIRH2-myc expression and prevented its ubiquitination in vivo but had no effect on the stability or ubiquitination of an alternative ubiquitin E3 ligase, Mdm2. Thus, MV P protein is the first protein from a pathogen that is able to specifically interact with and stabilize the ubiquitin E3 ligase hPIRH2 by preventing its ubiquitination.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1552-1552
Author(s):  
Hirohiko Shibayama ◽  
Yuri Saito ◽  
Akira Tanimura ◽  
Hirokazu Tanaka ◽  
Itaru Matsumura ◽  
...  

Abstract Abstract 1552 [Background] Anamorsin (also called CIAPIN-1) is a cell-death-defying factor, which was originally isolated as a molecule that conferred resistance to apoptosis induced by growth factor starvation. Anamorsin is ubiquitously expressed in various organs, including hematopoietic tissues like bone marrow, spleen, and thymus. Anamorsin-deficient (AM KO) mice die in late gestation. AM KO embryos are anemic and the size of the embryos is very small. It is thought that anamorsin plays a crucial role in hematopoiesis during late and/or terminal stages of differentiation and embryogenesis. Anamorsin does not show any homology to known apoptosis and cell growth regulatory molecules such as Bcl-2 family, caspase family, or signal transduction molecules. (J Exp Med 199: 581–592, 2004) Anamorsin is composed of a methyltransferase domain in the N-terminal region and a hypothetical Zn-ribbon-like motif in the C-terminal region, however, the precise biological effects of anamorsin remained to be elucidated. [Methods & Results] In an attempt to clarify the mechanisms of the anamorsin functions, we have performed the yeast-two-hybrid assay to identify anamorsin-interacting molecules and found that PICOT (PKCθ interacting cousin of thioredoxin) preferentially bound to anamorsin. Next, we tried to determine the binding sites of anamorsin and PICOT with the yeast-two-hybrid assays by using their several deletion mutants and found that the N-terminal region (11-180aa) of anamorsin and the N-terminal region (18-117aa) of PICOT were essential for binding each other. Furthermore, we tried to examine the signaling pathways by using murine embryonic fibroblast (MEF) cells produced from E-14.5 AM KO or wild type (WT) embryos. The proliferation of AM KO MEF cells was quite retarded compared with that of WT MEF cells. It is found that the phosphorylation states of ERK1/2, NFkB, and AKT were similar both in AM KO MEF cells and WT MEF cells, while PKCθ, PKCδ and p38 MAPK were more phosphorylated in AM KO MEF cells than in WT MEF cells. The expression of cyclin D1, the target molecule of p38 MAPK, was down-regulated in AM KO MEF cells. The PKC inhibitor, Rottlerin, blocked p38 MAPK phosphorylation and the p38 MAPK inhibitor, SB203580, restored the expression of cyclin D1 and the cell growth of AM KO MEF cells. [Conclusion] P38 MAPK, the stress activated MAPK, and PKCs have been known to link to cell growth, differentiation, and apoptosis, and also to be essential for cell survival in response to various stimuli. From our results, it was thought that PKCθ, PKCδ, and p38 MAPK activation lead to cell cycle retardation of AM KO MEF cells and anamorsin might negatively regulate PKCθ, PKCδ, and p38 MAPK cooperatively with PICOT in MEF cells. This study clarified a novel mechanism of the anamorsin functions. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document