scholarly journals Ca2+Signaling in B Cells

2010 ◽  
Vol 10 ◽  
pp. 2254-2264 ◽  
Author(s):  
Taras Lyubchenko

An increase in intracellular Ca2+concentration is one of the major initial steps in B-cell activation that occurs within minutes after antigen receptor (BCR) engagement. In recent years, significant advances have been made in characterizing molecular mechanisms of Ca2+signaling in lymphocytes, although the majority of work was done on T cells. This mini-review discusses several underexplored areas of Ca2+signaling in B cells: (1) Ca2+signaling in immune synapse and multifaceted Ca2+responses within a single cell, (2) source of Ca2+involved in Ca2+-dependent protein phosphorylation events and the role of store-operated influx, (3) role of BCR coreceptors in Ca2+signaling, and (4) Ca2+signaling and maintenance of B-cell tolerance and clinical significance of Ca2+signaling alterations.

1998 ◽  
Vol 188 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Thomas Fehr ◽  
Robert C. Rickert ◽  
Bernhard Odermatt ◽  
Jürgen Roes ◽  
Klaus Rajewsky ◽  
...  

Coligation of CD19, a molecule expressed during all stages of B cell development except plasmacytes, lowers the threshold for B cell activation with anti-IgM by a factor of 100. The cytoplasmic tail of CD19 contains nine tyrosine residues as possible phosphorylation sites and is postulated to function as the signal transducing element for complement receptor (CR)2. Generation and analysis of CD19 gene–targeted mice revealed that T cell–dependent (TD) antibody responses to proteinaceous antigens were impaired, whereas those to T cell–independent (TI) type 2 antigens were normal or even augmented. These results are compatible with earlier complement depletion studies and the postulated function of CD19. To analyze the role of CD19 in antiviral antibody responses, we immunized CD19−/− mice with viral antigens of TI-1, TI-2, and TD type. The effect of CD19 on TI responses was more dependent on antigen dose and replicative capacity than on antigen type. CR blocking experiments confirmed the role of CD19 as B cell signal transducer for complement. In contrast to immunization with protein antigens, infection of CD19−/− mice with replicating virus led to generation of specific germinal centers, which persisted for >100 d, whereas maintenance of memory antibody titers as well as circulating memory B cells was fully dependent on CD19. Thus, our study confirms a costimulatory role of CD19 on B cells under limiting antigen conditions and indicates an important role for B cell memory.


2019 ◽  
Vol 12 (571) ◽  
pp. eaao7194 ◽  
Author(s):  
Isabel Wilhelm ◽  
Ella Levit-Zerdoun ◽  
Johanna Jakob ◽  
Sarah Villringer ◽  
Marco Frensch ◽  
...  

Bacterial lectins are typically multivalent and bind noncovalently to specific carbohydrates on host tissues to facilitate bacterial adhesion. Here, we analyzed the effects of two fucose-binding lectins, BambL fromBurkholderia ambifariaand LecB fromPseudomonas aeruginosa, on specific signaling pathways in B cells. We found that these bacterial lectins induced B cell activation, which, in vitro, was dependent on the cell surface expression of the B cell antigen receptor (BCR) and its co-receptor CD19, as well as on spleen tyrosine kinase (Syk) activity. The resulting release of intracellular Ca2+was followed by an increase in the cell surface abundance of the activation marker CD86, augmented cytokine secretion, and subsequent cell death, replicating all of the events that are observed in vitro upon canonical and antigen-mediated B cell activation. Moreover, injection of BambL in mice resulted in a substantial, BCR-independent loss of B cells in the bone marrow with simultaneous, transient enlargement of the spleen (splenomegaly), as well as an increase in the numbers of splenic B cells and myeloid cells. Together, these data suggest that bacterial lectins can initiate polyclonal activation of B cells through their sole capacity to bind to fucose.


2007 ◽  
Vol 81 (22) ◽  
pp. 12525-12534 ◽  
Author(s):  
Anne Woods ◽  
Fanny Monneaux ◽  
Pauline Soulas-Sprauel ◽  
Sylviane Muller ◽  
Thierry Martin ◽  
...  

ABSTRACT The link between infection and autoimmunity is not yet well understood. This study was designed to evaluate if an acute viral infection known to induce type I interferon production, like influenza, can by itself be responsible for the breakdown of immune tolerance and for autoimmunity. We first tested the effects of influenza virus on B cells in vitro. We then infected different transgenic mice expressing human rheumatoid factors (RF) in the absence or in the constitutive presence of the autoantigen (human immunoglobulin G [IgG]) and young lupus-prone mice [(NZB × NZW)F1] with influenza virus and looked for B-cell activation. In vitro, the virus induces B-cell activation through type I interferon production by non-B cells but does not directly stimulate purified B cells. In vivo, both RF and non-RF B cells were activated in an autoantigen-independent manner. This activation was abortive since IgM and IgM-RF production levels were not increased in infected mice compared to uninfected controls, whether or not anti-influenza virus human IgG was detected and even after viral rechallenge. As in RF transgenic mice, acute viral infection of (NZB × NZW)F1 mice induced only an abortive activation of B cells and no increase in autoantibody production compared to uninfected animals. Taken together, these experiments show that virus-induced acute type I interferon production is not able by itself to break down B-cell tolerance in both normal and autoimmune genetic backgrounds.


2015 ◽  
Vol 90 (4) ◽  
pp. 2150-2154 ◽  
Author(s):  
Sang-Hoon Sin ◽  
Sun Ah Kang ◽  
Yongbaek Kim ◽  
Anthony Eason ◽  
Kelly Tan ◽  
...  

Interleukin 6 (IL-6) is considered a proliferation and survival factor for B cells. To assess the role of IL-6 in Kaposi sarcoma-associated herpesvirus (KSHV) latency, KSHV latency locus-transgenic mice (referred to as latency mice) lacking IL-6 were evaluated. IL-6−/−latency mice had the same phenotypes as the latency mice, i.e., increased frequency of marginal zone B cells, hyperplasia, and hyperglobulinemia, indicating that the KSHV latency locus, which includes all viral microRNAs (miRNAs), can compensate for lack of IL-6 in premalignant B cell activation.


2022 ◽  
Author(s):  
Md. Alamgir Hossain ◽  
Kara Anasti ◽  
Brian Watts ◽  
Kenneth Cronin ◽  
Advaiti Pai Kane ◽  
...  

HIV-1 Envelope (Env) proteins designed to induce neutralizing antibody responses allow study of the role of affinities (equilibrium dissociation constant, KD) and kinetic rates (association/dissociation rates) on B cell antigen recognition. It is unclear whether affinity discrimination during B cell activation is based solely on Env protein binding KD, and whether B cells discriminate between proteins of similar affinities but that bind with different kinetic rates. Here we used a panel of Env proteins and Ramos B cell lines expressing IgM BCRs with specificity for CD4 binding-site broadly neutralizing (bnAb) or a precursor antibody to study the role of antigen binding kinetic rates on both early (proximal/distal signaling) and late events (BCR/antigen internalization) in B cell activation. Our results support a kinetic model for B cell activation in which Env protein affinity discrimination is based not on overall KD, but on sensing of association rate and a threshold antigen-BCR half-life.


1983 ◽  
Vol 157 (5) ◽  
pp. 1529-1543 ◽  
Author(s):  
M Howard ◽  
S B Mizel ◽  
L Lachman ◽  
J Ansel ◽  
B Johnson ◽  
...  

In this report we describe conditions for polyclonal activation of small numbers of highly purified mouse B lymphocytes. Three signals are required for induction of DNA synthesis by the particular subset of small B lymphocytes investigated: a signal delivered by antibodies specific for the IgM receptor expressed on the B cell membrane; a signal delivered by a T cell-derived factor (B cell growth factor [BCGF]); and a signal delivered by the macrophage-derived factor interleukin 1 (IL-1). The conclusion that IL-1 has B cell co-stimulator activity is based on the findings that highly purified preparations of mouse and human IL-1 have the capacity to cause proliferation in B cells treated with anti-IgM and BCGF. Such cultures show an absolute dependence on exogenously added IL-1 when 2-mercaptoethanol is omitted from the medium. BCGF and IL-1 each act in a non-antigen-specific, non-H-2-restricted, synergistic manner. Their requirement is not observed when B cells are cultured at high density, presumably reflecting accessory cell contamination and endogenous factor production under these conditions. The B cell activation induced by these three signals is restricted to proliferation without the production of antibody-forming cells.


1996 ◽  
Vol 183 (1) ◽  
pp. 329-334 ◽  
Author(s):  
T Benatar ◽  
R Carsetti ◽  
C Furlonger ◽  
N Kamalia ◽  
T Mak ◽  
...  

CD45 expression is essential for immunoglobulin (Ig)-mediated B cell activation. Treatments with either anti-Ig or anti-CD45 suggest that CD45 may facilitate early signaling events such as calcium mobilization, and phosphoinositide hydrolyis as well as later events leading to transcription of genes such as c-myc. To examine the role of CD45 more extensively, CD45-deficient mice were generated by disruption of exon 6. Although normal numbers of B cells were found in peripheral lymphoid tissues, CD45-deficient cells failed to proliferate upon IgM crosslinking. In the present study, we demonstrate that the fraction of high buoyant density B cells is reduced while low buoyant density cells are increased. Moreover, there is a significant decline in the number of splenic B cells of the mature IgDhi, IgMlo phenotype. Although both the basal and anti-Ig-induced levels of phosphorylation of Ig-alpha and phospholipase C gamma 2 are indistinguishable from that observed in CD45+ control B cells, a major distinction was found in Ca2+ mobilization. While anti-Ig-induced mobilization of intracellular Ca2+ stores was normal, influx from extracellular sources was abrogated. This finding reveals a novel pathway of regulating B cell responses mediated by CD45.


2018 ◽  
Vol 1 (5) ◽  
pp. e201800060 ◽  
Author(s):  
Carlson Tsui ◽  
Paula Maldonado ◽  
Beatriz Montaner ◽  
Aldo Borroto ◽  
Balbino Alarcon ◽  
...  

During B-cell activation, the dynamic reorganisation of the cytoskeleton is crucial for multiple cellular responses, such as receptor signalling, cell spreading, antigen internalisation, intracellular trafficking, and antigen presentation. However, the role of intermediate filaments (IFs), which represent a major component of the mammalian cytoskeleton, is not well defined. Here, by using multiple super-resolution microscopy techniques, including direct stochastic optical reconstruction microscopy, we show that IFs in B cells undergo drastic reorganisation immediately upon antigen stimulation and that this reorganisation requires actin and microtubules. Although the loss of vimentin in B cells did not impair B-cell development, receptor signalling, and differentiation, vimentin-deficient B cells exhibit altered positioning of antigen-containing and lysosomal associated membrane protein 1 (LAMP1+) compartments, implying that vimentin may play a role in the fine-tuning of intracellular trafficking. Indeed, vimentin-deficient B cells exhibit impaired antigen presentation and delayed antibody responses in vivo. Thus, our study presents a new perspective on the role of IFs in B-cell activation.


2021 ◽  
Author(s):  
Romina Ulloa ◽  
Oreste Corrales ◽  
Fernanda Cabrera ◽  
Jorge Jara-Wilde ◽  
Juan José Saez ◽  
...  

AbstractUpon interaction with immobilized antigens B cells form an immune synapse, where actin remodeling and re-positioning of the microtubule-organizing center (MTOC) together with lysosomes can facilitate antigen extraction. B cells have restricted cytoplasmic space, mainly occupied by a large nucleus, yet the role of nuclear morphology in the formation of the immune synapse has not been addressed. Here we show that, upon activation, B cells re-orientate and adapt the size of their nuclear groove facing the immune synapse, where the MTOC sits and lysosomes accumulate. Silencing nuclear envelope proteins, Nesprin-1 and Sun-1, impairs nuclear reorientation towards the synapse and leads to defects in actin organization at this level. Consequently, B cells are unable to internalize the BCR after antigen activation. Nesprin-1 and Sun-1-silenced B cells also fail to accumulate the tethering factor Exo70 at the center of the synaptic membrane and display defective lysosome positioning, impairing efficient antigen extraction at the immune synapse. Thus, changes in nuclear morphology and positioning emerge as critical regulatory steps to coordinate B cell activation.


Sign in / Sign up

Export Citation Format

Share Document