scholarly journals PaxtoolsR: Pathway Analysis in R Using Pathway Commons

2015 ◽  
Author(s):  
Augustin Luna ◽  
Özgün Babur ◽  
Bülent Arman Aksoy ◽  
Emek Demir ◽  
Chris Sander

Purpose: PaxtoolsR package enables access to pathway data represented in the BioPAX format and made available through the Pathway Commons webservice for users of the R language. Features include the extraction, merging, and validation of pathway data represented in the BioPAX format. This package also provides novel pathway datasets and advanced querying features for R users through the Pathway Commons webservice allowing users to query, extract, and retrieve data and integrate this data with local BioPAX datasets. Availability: The PaxtoolsR package is compatible with R 3.1.1 on Windows, Mac OS X, and Linux using Bioconductor 3.0 and is available through the Bioconductor R package repository along with source code and a tutorial vignette describing common tasks, such as data visualization and gene set enrichment analysis. Source code and documentation are at http://bioconductor.org/packages/release/bioc/html/paxtoolsr.html. This plugin is free, open-source and licensed under the GNU Lesser General Public License (LGPL) v3.0.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 434 ◽  
Author(s):  
Daniil S. Wiebe ◽  
Nadezhda A. Omelyanchuk ◽  
Aleksei M. Mukhin ◽  
Ivo Grosse ◽  
Sergey A. Lashin ◽  
...  

Gene expression profiling data contains more information than is routinely extracted with standard approaches. Here we present Fold-Change-Specific Enrichment Analysis (FSEA), a new method for functional annotation of differentially expressed genes from transcriptome data with respect to their fold changes. FSEA identifies Gene Ontology (GO) terms, which are shared by the group of genes with a similar magnitude of response, and assesses these changes. GO terms found by FSEA are fold-change-specifically (e.g., weakly, moderately, or strongly) affected by a stimulus under investigation. We demonstrate that many responses to abiotic factors, mutations, treatments, and diseases occur in a fold-change-specific manner. FSEA analyses suggest that there are two prevailing responses of functionally-related gene groups, either weak or strong. Notably, some of the fold-change-specific GO terms are invisible by classical algorithms for functional gene enrichment, Singular Enrichment Analysis (SEA), and Gene Set Enrichment Analysis (GSEA). These are GO terms not enriched compared to the genome background but strictly regulated by a factor within specific fold-change intervals. FSEA analysis of a cancer-related transcriptome suggested that the gene groups with a tightly coordinated response can be the valuable source to search for possible regulators, markers, and therapeutic targets in oncogenic processes. Availability and Implementation: FSEA is implemented as the FoldGO Bioconductor R package and a web-server.



2018 ◽  
Author(s):  
Jordi Martorell-Marugán ◽  
Víctor González-Rumayor ◽  
Pedro Carmona-Sáez

AbstractMotivationThe identification of differentially methylated regions (DMRs) among phenotypes is one of the main goals of epigenetic analysis. Although there are several methods developed to detect DMRs, most of them are focused on detecting relatively large differences in methylation levels and fail to detect moderate, but consistent, methylation changes that might be associated to complex disorders.ResultsWe present mCSEA, an R package that implements a Gene Set Enrichment Analysis method to identify differentially methylated regions from Illumina 450K and EPIC array data. It is especially useful for detecting subtle, but consistent, methylation differences in complex phenotypes. mCSEA also implements functions to integrate gene expression data and to detect genes with significant correlations among methylation and gene expression patterns. Using simulated datasets, we show that mCSEA outperforms other tools in detecting DMRs. In addition, we applied mCSEA to a previously published dataset of sibling pairs discordant for intrauterine hyperglycemia exposure. We found several differentially methylated promoters in genes related to metabolic disorders like obesity and diabetes, demonstrating the potential of mCSEA to identify differentially methylated regions not detected by other methods.AvailabilitymCSEA is freely available from the Bioconductor [email protected]



2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Chih-Yi Chien ◽  
Ching-Wei Chang ◽  
Chen-An Tsai ◽  
James J. Chen

Gene set analysis methods aim to determine whether an a priori defined set of genes shows statistically significant difference in expression on either categorical or continuous outcomes. Although many methods for gene set analysis have been proposed, a systematic analysis tool for identification of different types of gene set significance modules has not been developed previously. This work presents an R package, called MAVTgsa, which includes three different methods for integrated gene set enrichment analysis. (1) The one-sided OLS (ordinary least squares) test detects coordinated changes of genes in gene set in one direction, either up- or downregulation. (2) The two-sided MANOVA (multivariate analysis variance) detects changes both up- and downregulation for studying two or more experimental conditions. (3) A random forests-based procedure is to identify gene sets that can accurately predict samples from different experimental conditions or are associated with the continuous phenotypes. MAVTgsa computes thePvalues and FDR (false discovery rate)q-value for all gene sets in the study. Furthermore, MAVTgsa provides several visualization outputs to support and interpret the enrichment results. This package is available online.



2019 ◽  
Author(s):  
Tao Fang ◽  
Iakov Davydov ◽  
Daniel Marbach ◽  
Jitao David Zhang

AbstractMotivationCanonical methods for gene-set enrichment analysis assume independence between gene-sets. In practice, heterogeneous gene-sets from diverse sources are frequently combined and used, resulting in gene-sets with overlapping genes. They compromise statistical modelling and complicate interpretation of results.ResultsWe rephrase gene-set enrichment as a regression problem. Given some genes of interest (e.g.a list of hits from an experiment) and gene-sets (e.g.functional annotations or pathways), we aim to identify a sparse list of gene-sets for the genes of interest. In a regression framework, this amounts to identifying a minimum set of gene-sets that optimally predicts whether any gene belongs to the given genes of interest. To accommodate redundancy between gene-sets, we propose regularized regression techniques such as theelastic net.We report that regression-based results are consistent with established gene-set enrichment methods but more parsimonious and interpretable.AvailabilityWe implement the model ingerr(gene-set enrichment with regularized regression), an R package freely available athttps://github.com/TaoDFang/gerrand submitted toBioconductor.Code and data required to reproduce the results of this study are available athttps://github.com/TaoDFang/GeneModuleAnnotationPaper.ContactJitao David Zhang ([email protected]), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124, 4070 Basel, Switzerland.



2020 ◽  
Vol 15 ◽  
Author(s):  
Wei Han ◽  
Dongchen Lu ◽  
Chonggao Wang ◽  
Mengdi Cui ◽  
Kai Lu

Background: In the past decades, the incidence of thyroid cancer (TC) has been gradually increasing, owing to the widespread use of ultrasound scanning devices. However, the key mRNAs, miRNAs, and mRNA-miRNA network in papillary thyroid carcinoma (PTC) has not been fully understood. Material and Methods: In this study, multiple bioinformatics methods were employed, including differential expression analysis, gene set enrichment analysis, and miRNA-mRNA interaction network construction. Results: First, we investigated the key miRNAs that regulated significantly more differentially expressed genes based on GSEA method. Second, we searched for the key miRNAs based on the mRNA-miRNA interaction subnetwork involved in PTC. We identified hsa-mir-1275, hsa-mir-1291, hsa-mir-206 and hsa-mir-375 as the key miRNAs involved in PTC pathogenesis. Conclusion: The integrated analysis of the gene and miRNA expression data not only identified key mRNAs, miRNAs, and mRNA-miRNA network involved in papillary thyroid carcinoma, but also improved our understanding of the pathogenesis of PTC.



2021 ◽  
Vol 22 (14) ◽  
pp. 7654
Author(s):  
Chelsie B. Steinhauser ◽  
Colleen A. Lambo ◽  
Katharine Askelson ◽  
Gregory W. Burns ◽  
Susanta K. Behura ◽  
...  

Placental development is modified in response to maternal nutrient restriction (NR), resulting in a spectrum of fetal growth rates. Pregnant sheep carrying singleton fetuses and fed either 100% (n = 8) or 50% (NR; n = 28) of their National Research Council (NRC) recommended intake from days 35–135 of pregnancy were used to elucidate placentome transcriptome alterations at both day 70 and day 135. NR fetuses were further designated into upper (NR NonSGA; n = 7) and lower quartiles (NR SGA; n = 7) based on day 135 fetal weight. At day 70 of pregnancy, there were 22 genes dysregulated between NR SGA and 100% NRC placentomes, 27 genes between NR NonSGA and 100% NRC placentomes, and 22 genes between NR SGA and NR NonSGA placentomes. These genes mediated molecular functions such as MHC class II protein binding, signaling receptor binding, and cytokine activity. Gene set enrichment analysis (GSEA) revealed significant overrepresentation of genes for natural-killer-cell-mediated cytotoxicity in NR SGA compared to 100% NRC placentomes, and alterations in nutrient utilization pathways between NR SGA and NR NonSGA placentomes at day 70. Results identify novel factors associated with impaired function in SGA placentomes and potential for placentomes from NR NonSGA pregnancies to adapt to nutritional hardship.



2019 ◽  
Vol 8 (10) ◽  
pp. 1580 ◽  
Author(s):  
Kyoung Min Moon ◽  
Kyueng-Whan Min ◽  
Mi-Hye Kim ◽  
Dong-Hoon Kim ◽  
Byoung Kwan Son ◽  
...  

Ninety percent of patients with scrub typhus (SC) with vasculitis-like syndrome recover after mild symptoms; however, 10% can suffer serious complications, such as acute respiratory failure (ARF) and admission to the intensive care unit (ICU). Predictors for the progression of SC have not yet been established, and conventional scoring systems for ICU patients are insufficient to predict severity. We aimed to identify simple and robust indicators to predict aggressive behaviors of SC. We evaluated 91 patients with SC and 81 non-SC patients who were admitted to the ICU, and 32 cases from the public functional genomics data repository for gene expression analysis. We analyzed the relationships between several predictors and clinicopathological characteristics in patients with SC. We performed gene set enrichment analysis (GSEA) to identify SC-specific gene sets. The acid-base imbalance (ABI), measured 24 h before serious complications, was higher in patients with SC than in non-SC patients. A high ABI was associated with an increased incidence of ARF, leading to mechanical ventilation and worse survival. GSEA revealed that SC correlated to gene sets reflecting inflammation/apoptotic response and airway inflammation. ABI can be used to indicate ARF in patients with SC and assist with early detection.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jovana Maksimovic ◽  
Alicia Oshlack ◽  
Belinda Phipson

AbstractDNA methylation is one of the most commonly studied epigenetic marks, due to its role in disease and development. Illumina methylation arrays have been extensively used to measure methylation across the human genome. Methylation array analysis has primarily focused on preprocessing, normalization, and identification of differentially methylated CpGs and regions. GOmeth and GOregion are new methods for performing unbiased gene set testing following differential methylation analysis. Benchmarking analyses demonstrate GOmeth outperforms other approaches, and GOregion is the first method for gene set testing of differentially methylated regions. Both methods are publicly available in the missMethyl Bioconductor R package.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mike Fang ◽  
Brian Richardson ◽  
Cheryl M. Cameron ◽  
Jean-Eudes Dazard ◽  
Mark J. Cameron

Abstract Background In this study, we demonstrate that our modified Gene Set Enrichment Analysis (GSEA) method, drug perturbation GSEA (dpGSEA), can detect phenotypically relevant drug targets through a unique transcriptomic enrichment that emphasizes biological directionality of drug-derived gene sets. Results We detail our dpGSEA method and show its effectiveness in detecting specific perturbation of drugs in independent public datasets by confirming fluvastatin, paclitaxel, and rosiglitazone perturbation in gastroenteropancreatic neuroendocrine tumor cells. In drug discovery experiments, we found that dpGSEA was able to detect phenotypically relevant drug targets in previously published differentially expressed genes of CD4+T regulatory cells from immune responders and non-responders to antiviral therapy in HIV-infected individuals, such as those involved with virion replication, cell cycle dysfunction, and mitochondrial dysfunction. dpGSEA is publicly available at https://github.com/sxf296/drug_targeting. Conclusions dpGSEA is an approach that uniquely enriches on drug-defined gene sets while considering directionality of gene modulation. We recommend dpGSEA as an exploratory tool to screen for possible drug targeting molecules.



Sign in / Sign up

Export Citation Format

Share Document