scholarly journals A decision underlies phototaxis in an insect

2015 ◽  
Author(s):  
E. Axel Gorostiza ◽  
Julien Colomb ◽  
Björn Brembs

AbstractLike a moth into the flame - Phototaxis is an iconic example for innate preferences. Such preferences likely reflect evolutionary adaptations to predictable situations and have traditionally been conceptualized as hard-wired stimulus-response links. Perhaps therefore, the century-old discovery of flexibility in Drosophila phototaxis has received little attention. Here we report that across several different behavioral tests, light/dark preference tested in walking is dependent on various aspects of flight. If we temporarily compromise flying ability, walking photopreference reverses concomitantly. Neuronal activity in circuits expressing dopamine and octopamine, respectively, plays a differential role in photopreference, suggesting a potential involvement of these biogenic amines in this case of behavioral flexibility. We conclude that flies monitor their ability to fly, and that flying ability exerts a fundamental effect on action selection in Drosophila. This work suggests that even behaviors which appear simple and hard-wired comprise a value-driven decision-making stage, negotiating the external situation with the animal’s internal state, before an action is selected.

Open Biology ◽  
2016 ◽  
Vol 6 (12) ◽  
pp. 160229 ◽  
Author(s):  
E. Axel Gorostiza ◽  
Julien Colomb ◽  
Björn Brembs

Like a moth into the flame—phototaxis is an iconic example for innate preferences. Such preferences probably reflect evolutionary adaptations to predictable situations and have traditionally been conceptualized as hard-wired stimulus–response links. Perhaps for that reason, the century-old discovery of flexibility in Drosophila phototaxis has received little attention. Here, we report that across several different behavioural tests, light/dark preference tested in walking is dependent on various aspects of flight. If we temporarily compromise flying ability, walking photopreference reverses concomitantly. Neuronal activity in circuits expressing dopamine and octopamine, respectively, plays a differential role in photopreference, suggesting a potential involvement of these biogenic amines in this case of behavioural flexibility. We conclude that flies monitor their ability to fly, and that flying ability exerts a fundamental effect on action selection in Drosophila . This work suggests that even behaviours which appear simple and hard-wired comprise a value-driven decision-making stage, negotiating the external situation with the animal's internal state, before an action is selected.


2017 ◽  
Vol 25 (1) ◽  
pp. 5-23 ◽  
Author(s):  
Robert Lowe ◽  
Erik Billing

In this article we present a novel neural network implementation of Associative Two-Process (ATP) theory based on an Actor–Critic-like architecture. Our implementation emphasizes the affective components of differential reward magnitude and reward omission expectation and thus we model Affective-Associative Two-Process theory (Aff-ATP). ATP has been used to explain the findings of differential outcomes training (DOT) procedures, which emphasize learning differentially valuated outcomes for cueing actions previously associated with those outcomes. ATP hypothesizes the existence of a ‘prospective’ memory route through which outcome expectations can bring to bear on decision making and can even substitute for decision making based on the ‘retrospective’ inputs of standard working memory. While DOT procedures are well recognized in the animal learning literature they have not previously been computationally modelled. The model presented in this article helps clarify the role of ATP computationally through the capturing of empirical data based on DOT. Our Aff-ATP model illuminates the different roles that prospective and retrospective memory can have in decision making (combining inputs to action selection functions). In specific cases, the model’s prospective route allows for adaptive switching (correct action selection prior to learning) following changes in the stimulus–response–outcome contingencies.


2021 ◽  
Vol 383 (1) ◽  
pp. 207-225 ◽  
Author(s):  
K. P. Siju ◽  
Jean-Francois De Backer ◽  
Ilona C. Grunwald Kadow

AbstractBehavioral flexibility for appropriate action selection is an advantage when animals are faced with decisions that will determine their survival or death. In order to arrive at the right decision, animals evaluate information from their external environment, internal state, and past experiences. How these different signals are integrated and modulated in the brain, and how context- and state-dependent behavioral decisions are controlled are poorly understood questions. Studying the molecules that help convey and integrate such information in neural circuits is an important way to approach these questions. Many years of work in different model organisms have shown that dopamine is a critical neuromodulator for (reward based) associative learning. However, recent findings in vertebrates and invertebrates have demonstrated the complexity and heterogeneity of dopaminergic neuron populations and their functional implications in many adaptive behaviors important for survival. For example, dopaminergic neurons can integrate external sensory information, internal and behavioral states, and learned experience in the decision making circuitry. Several recent advances in methodologies and the availability of a synaptic level connectome of the whole-brain circuitry of Drosophila melanogaster make the fly an attractive system to study the roles of dopamine in decision making and state-dependent behavior. In particular, a learning and memory center—the mushroom body—is richly innervated by dopaminergic neurons that enable it to integrate multi-modal information according to state and context, and to modulate decision-making and behavior.


Author(s):  
Lidia K Simanjuntak ◽  
Tessa Y M Sihite ◽  
Mesran Mesran ◽  
Nuning Kurniasih ◽  
Yuhandri Yuhandri

All colleges each year organize the selection of new admissions. Acceptance of prospective students in universities as education providers is done by selecting prospective students based on achievement in school and college entrance selection. To select the best student candidates based on predetermined criteria, then use Multi-Criteria Decision Making (MCDM) or commonly called decision support system. One method in MCDM is the Elimination Et Choix Traduisant la Reality (ELECTRE). The ELECTRE method is the best method of action selection. The ELECTRE method to obtain the best alternative by eliminating alternative that do not fit the criteria and can be applied to the decision SNMPTN invitation path.


Author(s):  
Clio Korn ◽  
Thomas Akam ◽  
Kristian H. R. Jensen ◽  
Cristiana Vagnoni ◽  
Anna Huber ◽  
...  

AbstractDopamine plays a crucial role in adaptive behavior, and dysfunctional dopamine is implicated in multiple psychiatric conditions characterized by inflexible or inconsistent choices. However, the precise relationship between dopamine and flexible decision making remains unclear. One reason is that, while many studies have focused on the activity of dopamine neurons, efficient dopamine signaling also relies on clearance mechanisms, notably the dopamine transporter (DAT), which predominates in striatum, and catechol-O-methyltransferase (COMT), which predominates in cortex. The exact locus, extent, and timescale of the effects of DAT and COMT are uncertain. Moreover, there is limited data on how acute disruption of either mechanism affects flexible decision making strategies mediated by cortico-striatal networks. To address these issues, we combined pharmacological modulation of DAT and COMT with electrochemistry and behavior in mice. DAT blockade, but not COMT inhibition, regulated sub-second dopamine release in the nucleus accumbens core, but surprisingly neither clearance mechanism affected evoked release in prelimbic cortex. This was not due to a lack of sensitivity, as both amphetamine and atomoxetine changed the kinetics of sub-second release. In a multi-step decision making task where mice had to respond to reversals in either reward probabilities or the choice sequence to reach the goal, DAT blockade selectively impaired, and COMT inhibition improved, performance after reward reversals, but neither manipulation affected the adaptation of choices after action-state transition reversals. Together, our data suggest that DAT and COMT shape specific aspects of behavioral flexibility by regulating different aspects of the kinetics of striatal and cortical dopamine, respectively.


2005 ◽  
Vol 27 (3) ◽  
pp. 533-551
Author(s):  
André Lecours

The formulation of a policy that will satisfy several values and interests more or less compatible is a classic problem of political decision making. This phenomenon by which there can be, in a foreign policy issue for example, several divergent values and interests was named value-complexity by Alexander George. When facing a value complexity problem, a decision maker must choose some values and some interests over others. The choice he makes will not necessarily be the one made by other decision makers. This can result in a serious impediment to the decision making process. The American foreign policy towards the Middle East faced, for the major part of the Cold War era, a value-complexity problem because it looked to reconcile four hard-to reconcile values and interests. The Reagan government was confronted rather acutely with this problem in the making of its Iranian policies. The administration was split in at least two factions over Iran : one who thought primarily of containing the Soviet Union in the Middle East region and the other for whom the political stability of moderate regimes threatened by revolutionnary Iran should be the most important priority. The existence of these factions, consequence of value-complexity, produced the making and the implementation of two distinct Iranian policies.


2016 ◽  
Vol 113 (31) ◽  
pp. E4531-E4540 ◽  
Author(s):  
Braden A. Purcell ◽  
Roozbeh Kiani

Decision-making in a natural environment depends on a hierarchy of interacting decision processes. A high-level strategy guides ongoing choices, and the outcomes of those choices determine whether or not the strategy should change. When the right decision strategy is uncertain, as in most natural settings, feedback becomes ambiguous because negative outcomes may be due to limited information or bad strategy. Disambiguating the cause of feedback requires active inference and is key to updating the strategy. We hypothesize that the expected accuracy of a choice plays a crucial rule in this inference, and setting the strategy depends on integration of outcome and expectations across choices. We test this hypothesis with a task in which subjects report the net direction of random dot kinematograms with varying difficulty while the correct stimulus−response association undergoes invisible and unpredictable switches every few trials. We show that subjects treat negative feedback as evidence for a switch but weigh it with their expected accuracy. Subjects accumulate switch evidence (in units of log-likelihood ratio) across trials and update their response strategy when accumulated evidence reaches a bound. A computational framework based on these principles quantitatively explains all aspects of the behavior, providing a plausible neural mechanism for the implementation of hierarchical multiscale decision processes. We suggest that a similar neural computation—bounded accumulation of evidence—underlies both the choice and switches in the strategy that govern the choice, and that expected accuracy of a choice represents a key link between the levels of the decision-making hierarchy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca F. Kaiser ◽  
Theo O. J. Gruendler ◽  
Oliver Speck ◽  
Lennart Luettgau ◽  
Gerhard Jocham

AbstractIn a dynamic world, it is essential to decide when to leave an exploited resource. Such patch-leaving decisions involve balancing the cost of moving against the gain expected from the alternative patch. This contrasts with value-guided decisions that typically involve maximizing reward by selecting the current best option. Patterns of neuronal activity pertaining to patch-leaving decisions have been reported in dorsal anterior cingulate cortex (dACC), whereas competition via mutual inhibition in ventromedial prefrontal cortex (vmPFC) is thought to underlie value-guided choice. Here, we show that the balance between cortical excitation and inhibition (E/I balance), measured by the ratio of GABA and glutamate concentrations, plays a dissociable role for the two kinds of decisions. Patch-leaving decision behaviour relates to E/I balance in dACC. In contrast, value-guided decision-making relates to E/I balance in vmPFC. These results support mechanistic accounts of value-guided choice and provide evidence for a role of dACC E/I balance in patch-leaving decisions.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 969
Author(s):  
Eric Cayeux ◽  
Benoît Daireaux ◽  
Adrian Ambrus ◽  
Rodica Mihai ◽  
Liv Carlsen

The drilling process is complex because unexpected situations may occur at any time. Furthermore, the drilling system is extremely long and slender, therefore prone to vibrations and often being dominated by long transient periods. Adding the fact that measurements are not well distributed along the drilling system, with the majority of real-time measurements only available at the top side and having only access to very sparse data from downhole, the drilling process is poorly observed therefore making it difficult to use standard control methods. Therefore, to achieve completely autonomous drilling operations, it is necessary to utilize a method that is capable of estimating the internal state of the drilling system from parsimonious information while being able to make decisions that will keep the operation safe but effective. A solution enabling autonomous decision-making while drilling has been developed. It relies on an optimization of the time to reach the section total depth (TD). The estimated time to reach the section TD is decomposed into the effective time spent in conducting the drilling operation and the likely time lost to solve unexpected drilling events. This optimization problem is solved by using a Markov decision process method. Several example scenarios have been run in a virtual rig environment to test the validity of the concept. It is found that the system is capable to adapt itself to various drilling conditions, as for example being aggressive when the operation runs smoothly and the estimated uncertainty of the internal states is low, but also more cautious when the downhole drilling conditions deteriorate or when observations tend to indicate more erratic behavior, which is often observed prior to a drilling event.


2021 ◽  
Author(s):  
Aaron Tung

Abstract Values are what stakeholders regard to be important to decisions (Kruglanski & Higgins 2007). How stakeholder prioritize, rank, balance, and trade-off values can have significant influence on their reasoning and evaluation of decommissioning outcomes and decisions. Stakeholder values can vary depending on various factors including religious beliefs, personal interests, and past experiences (Lechner et al., 2017). Value-focused thinking is a decision science theory developed by Keeney (1992) which builds upon the concept of varying stakeholder values. Keeney (1992) argues that the best decision is one that best reflects the actual values of stakeholders. which suggests that the acceptability of decommissioning decisions (full removal, partial removal, leave in-situ, rigs-to-reefs, etc.) by stakeholders will vary depending on the values of stakeholder in that particular context. This paper explores the idea of value-focused thinking and derive implications for decommissioning decision-making. Overall, the research finding suggests that rather than basing a decommissioning decision solely on scientific evidence, there is also a need for the decommissioning decisions to be able to reflect the actual values of stakeholders in that particular context. The criteria and weightage of the adopted multi-criteria decision analysis tool, for example, should accurately represent the actual values of stakeholders, so as to enable the tool to produce outcomes and decisions that has a higher probability of stakeholder acceptance.


Sign in / Sign up

Export Citation Format

Share Document