scholarly journals Dynamic Maternal Gradients Control Timing and Shift-Rates forDrosophilaGap Gene Expression

2016 ◽  
Author(s):  
Berta Verd ◽  
Anton Crombach ◽  
Johannes Jaeger

AbstractPattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network inDrosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded bybicoid (bcd)andcaudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory processes in development.Author SummaryAnimal development is a highly dynamic process. Biochemical or environmental signals can cause the rules that shape it to change over time. We know little about the effects of such changes. For the sake of simplicity, we usually leave them out of our models and experimental assays. Here, we do exactly the opposite. We characterise precisely those aspects of pattern formation caused by changing signalling inputs to a gene regulatory network, the gap gene system ofDrosophila melanogaster. Gap genes are involved in determining the body segments of flies and other insects during early development. Gradients of maternal morphogens activate the expression of the gap genes. These gradients are highly dynamic themselves, as they decay while being read out. We show that this decay controls the peak concentration of gap gene products, produces smooth boundaries of gene expression, and slows down the observed positional shifts of gap domains in the posterior of the embryo, thereby stabilising the spatial pattern. Our analysis demonstrates that the dynamics of gene regulation not only affect the timing, but also the positioning of gene expression. This suggests that we must pay closer attention to transient dynamic aspects of development than is currently the case.

2018 ◽  
Vol 5 (8) ◽  
pp. 180458 ◽  
Author(s):  
Eva Jiménez-Guri ◽  
Karl R. Wotton ◽  
Johannes Jaeger

Gap genes are involved in segment determination during early development of the vinegar fly Drosophila melanogaster and other dipteran insects (flies, midges and mosquitoes). They are expressed in overlapping domains along the antero-posterior (A–P) axis of the blastoderm embryo. While gap domains cover the entire length of the A–P axis in Drosophila, there is a region in the blastoderm of the moth midge Clogmia albipunctata , which lacks canonical gap gene expression. Is a non-canonical gap gene functioning in this area? Here, we characterize tarsal-less ( tal ) in C. albipunctata . The homologue of tal in the flour beetle Tribolium castaneum (called milles-pattes, mlpt ) is a bona fide gap gene. We find that Ca-tal is expressed in the region previously reported as lacking gap gene expression. Using RNA interference, we study the interaction of Ca-tal with gap genes. We show that Ca-tal is regulated by gap genes, but only has a very subtle effect on tailless (Ca-tll), while not affecting other gap genes at all. Moreover, cuticle phenotypes of Ca-tal depleted embryos do not show any gap phenotype. We conclude that Ca-tal is expressed and regulated like a gap gene, but does not function as a gap gene in C. albipunctata .


2021 ◽  
Author(s):  
Amardeep Singh ◽  
Aneil F. Agrawal

AbstractIn most species, selection favours different phenotypes in the two sexes. This type of sexual antagonism can be resolved through the evolution of sexual dimorphism. Sex differences in gene regulation is a proximate mechanism by which this resolution can be achieved. One form of differential gene regulation is sex differences in the amount a gene is expressed, so called sex-biased gene expression (SBGE). Less attention has been given to sexual dimorphism in isoform usage (SDIU), resulting from sex-specific alternative splicing, which may be another way in which conflict between the sexes is resolved. Here, we use RNA-seq data from two tissue types (heads and bodies) from 18 genotypes of adult Drosophila melanogaster to investigate SDIU. In our data, SBGE and SDIU are both much more prevalent in the body than the head. SDIU is less common among sex-biased than unbiased genes in the body, though the opposite pattern occurs in the head. SDIU, but not SBGE, is significantly associated with reduced values of Tajima’s D, possibly indicating that such genes experience positive selection more frequently. SBGE, but not SDIU, is associated with increased πN/πS, possibly indicating weaker purifying selection. Together, these results are consistent with the idea that the SDIU and SBGE are alternative pathways towards the resolution of conflict between the sexes with distinct evolutionary consequences.


2018 ◽  
Author(s):  
Eva Jiménez-Guri ◽  
Karl R. Wotton ◽  
Johannes Jaeger

AbstractGap genes are involved in segment determination during early development of the vinegar fly Drosophila melanogaster and other dipteran insects (flies, midges, and mosquitoes). They are expressed in overlapping domains along the antero-posterior (A–P) axis of the blastoderm embryo. While gap domains cover the entire length of the A–P axis in Drosophila, there is a region in the blastoderm of the moth midge Clogmia albipunctata, which lacks canonical gap gene expression. Is a non-canonical gap gene functioning in this area? Here, we characterize tarsal-less (tal) in C. albipunctata. The homolog of tal in the flour beetle Tribolium castaneum (called milles-pattes, mlpt) is a bona fide gap gene. We find that Ca-tal is expressed in the region previously reported as lacking gap gene expression. Using RNA interference, we study the interaction of Ca-tal with gap genes. We show that Ca-tal is regulated by gap genes, but only has a very subtle effect on tailless (Catll), while not affecting other gap genes at all. Moreover, cuticle phenotypes of Ca-tal depleted embryos do not show any gap phenotype. We conclude that Ca-tal is expressed and regulated like a gap gene, but does not function as a gap gene in C. albipunctata.


2021 ◽  
Author(s):  
Jingxiang Shen ◽  
Feng Liu ◽  
Chao Tang

AbstractDespite variability in embryo size, the tissue, organ and body plan developin proportionwith embryo size, known as the scaling phenomenon. Scale-invariant patterning of gene expression is a common feature in development and regeneration, and can be generated by mechanisms such as scaling morphogen gradient and dynamic oscillation. However, whether and how static non-scaling morphogens (input) can induce a scaling gene expression (output) across the entire embryo is not clear. Here we show that scaling requirement sets severe constraints on the geometric structure of the input-output relation (the decoder), from which information about the regulation and mutants’ behavior can be deduced without going into any molecular details. We demonstrate that theDrosophilagap gene system achieves scaling in the way that is entirely consistent with our theory. Remarkably, following the geometry dictated by scaling, a parameter-free decoder correctly and quantitatively accounts for the gap gene expression patterns in nearly all morphogen mutants. Furthermore, the regulation logic and the coding/decoding strategy of the gap gene system can also be revealed from the decoder geometry. Our work provides a general theoretical framework on a large class of problems where scaling output is induced by non-scaling input, as well as a unified understanding of scaling, mutants’ behavior and regulation in theDrosophilagap gene and related systems.Significance StatementWithin a given species, fluctuation in egg or embryo size is unavoidable. Despite this, the gene expression pattern and hence the embryonic structure often scale in proportion with the body length. Thisscalingphenomenon is very common in development and regeneration, and has long fascinated scientists. In this paper, the authors address the question of whether and how a scaling gene expression pattern can originate from non-scaling signals (morphogens). They found that scaling has profound implications in the developmental programming -- properties and behaviors of the underlying gene network can be deduced from the scaling requirement. They demonstrated that the scaling in fruit fly embryogenesis indeed works in this way. Thus, although biological regulatory systems are very complex in general, it can be forced to exhibit simple macroscopic behaviors due to selection pressure, as demonstrated in this study.


2013 ◽  
Vol 304 (3) ◽  
pp. R177-R188 ◽  
Author(s):  
Wendi S. Neckameyer ◽  
Kathryn J. Argue

Numerous studies have detailed the extensive conservation of developmental signaling pathways between the model system, Drosophila melanogaster, and mammalian models, but researchers have also profited from the unique and highly tractable genetic tools available in this system to address critical questions in physiology. In this review, we have described contributions that Drosophila researchers have made to mathematical dynamics of pattern formation, cardiac pathologies, the way in which pain circuits are integrated to elicit responses from sensation, as well as the ways in which gene expression can modulate diverse behaviors and shed light on human cognitive disorders. The broad and diverse array of contributions from Drosophila underscore its translational relevance to modeling human disease.


2021 ◽  
Author(s):  
Olivia R A Tidswell ◽  
Matthew A Benton ◽  
Michael E Akam

In Drosophila, segmentation genes of the gap class form a regulatory network that positions segment boundaries and assigns segment identities. This gene network shows striking parallels with another gene network known as the neuroblast timer series. The neuroblast timer genes hunchback, Krüppel, nubbin, and castor are expressed in temporal sequence in neural stem cells to regulate the fate of their progeny. These same four genes are expressed in corresponding spatial sequence along the Drosophila blastoderm. The first two, hunchback and Krüppel, are canonical gap genes, but nubbin and castor have limited or no roles in Drosophila segmentation. Whether nubbin and castor regulate segmentation in insects with the ancestral, sequential mode of segmentation remains largely unexplored. We have investigated the expression and functions of nubbin and castor during segment patterning in the sequentially-segmenting beetle Tribolium. Using multiplex fluorescent in situ hybridisation, we show that Tc-hunchback, Tc-Krüppel, Tc-nubbin and Tc-castor are expressed sequentially in the segment addition zone of Tribolium, in the same order as they are expressed in Drosophila neuroblasts. Furthermore, simultaneous disruption of multiple genes reveals that Tc-nubbin regulates segment identity, but does so redundantly with two previously described gap/gap-like genes, Tc-giant and Tc-knirps. Knockdown of two or more of these genes results in the formation of up to seven pairs of ectopic legs on abdominal segments. We show that this homeotic transformation is caused by loss of abdominal Hox gene expression, likely due to expanded Tc-Krüppel expression. Our findings support the theory that the neuroblast timer series was co-opted for use in insect segment patterning, and contribute to our growing understanding of the evolution and function of the gap gene network outside of Drosophila.


2021 ◽  
Author(s):  
Wenhan Chang ◽  
Martin Kreitman ◽  
Daniel R. Matute

ABSTRACTEvolved changes within species lead to the inevitable loss of viability in hybrids. Inviability is also a convenient phenotype to genetically map and validate functionally divergent genes and pathways differentiating closely related species. Here we identify the Drosophila melanogaster form of the highly conserved essential gap gene giant (gt) as a key genetic determinant of hybrid inviability in crosses with D. santomea. We show that the coding region of this allele in D. melanogaster/D. santomea hybrids is sufficient to cause embryonic inviability not seen in either pure species. Further genetic analysis indicates that tailless (tll), another gap gene, is also involved in the hybrid defects. giant and tll are both members of the gap gene network of transcription factors that participate in establishing anterior-posterior specification of the dipteran embryo, a highly conserved developmental process. Genes whose outputs in this process are functionally conserved nevertheless evolve over short timescales to cause inviability in hybrids.


Genetics ◽  
2009 ◽  
Vol 183 (3) ◽  
pp. 1005-1026 ◽  
Author(s):  
Cristina Cruz ◽  
Alvaro Glavic ◽  
Mar Casado ◽  
Jose F. de Celis

The Drosophila melanogaster wing is a model system for analyzing the genetic control of organ size, shape, and pattern formation. The formation of the wing involves a variety of processes, such as cell growth, proliferation, pattern formation, and differentiation. These developmental processes are under genetic control, and many genes participating in specific aspects of wing development have already being characterized. In this work, we aim to identify novel genes regulating wing growth and patterning. To this end, we have carried out a gain-of-function screen generating novel P-UAS (upstream activating sequences) insertions allowing forced gene expression. We produced 3340 novel P-UAS insertions and isolated 300 that cause a variety of wing phenotypes in combination with a Gal4 driver expressed exclusively in the central domain of the presumptive wing blade. The mapping of these P-UAS insertion sites allowed us to identify the gene that causes the gain-of-function phenotypes. We show that a fraction of these phenotypes are related to the induction of cell death in the domain of ectopic gene expression. Finally, we present a preliminary characterization of a gene identified in the screen, the function of which is required for the development of the L5 longitudinal vein.


2014 ◽  
Vol 42 (4) ◽  
pp. 1174-1179 ◽  
Author(s):  
Monica J. Piatek ◽  
Andreas Werner

Endo-siRNAs (endogenous small-interfering RNAs) have recently emerged as versatile regulators of gene expression. They derive from double-stranded intrinsic transcripts and are processed by Dicer and associate with Argonaute proteins. In Caenorhabditis elegans, endo-siRNAs are known as 22G and 26G RNAs and are involved in genome protection and gene regulation. Drosophila melanogaster endo-siRNAs are produced with the help of specific Dicer and Argonaute isoforms and play an essential role in transposon control and the protection from viral infections. Biological functions of endo-siRNAs in vertebrates include repression of transposable elements and chromatin organization, as well as gene regulation at the transcriptional and post-transcriptional levels.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e26797 ◽  
Author(s):  
James B. Hengenius ◽  
Michael Gribskov ◽  
Ann E. Rundell ◽  
Charless C. Fowlkes ◽  
David M. Umulis

Sign in / Sign up

Export Citation Format

Share Document