scholarly journals Sexual dimorphism in gene expression: coincidence and population genomics of two forms of differential expression in Drosophila melanogaster

2021 ◽  
Author(s):  
Amardeep Singh ◽  
Aneil F. Agrawal

AbstractIn most species, selection favours different phenotypes in the two sexes. This type of sexual antagonism can be resolved through the evolution of sexual dimorphism. Sex differences in gene regulation is a proximate mechanism by which this resolution can be achieved. One form of differential gene regulation is sex differences in the amount a gene is expressed, so called sex-biased gene expression (SBGE). Less attention has been given to sexual dimorphism in isoform usage (SDIU), resulting from sex-specific alternative splicing, which may be another way in which conflict between the sexes is resolved. Here, we use RNA-seq data from two tissue types (heads and bodies) from 18 genotypes of adult Drosophila melanogaster to investigate SDIU. In our data, SBGE and SDIU are both much more prevalent in the body than the head. SDIU is less common among sex-biased than unbiased genes in the body, though the opposite pattern occurs in the head. SDIU, but not SBGE, is significantly associated with reduced values of Tajima’s D, possibly indicating that such genes experience positive selection more frequently. SBGE, but not SDIU, is associated with increased πN/πS, possibly indicating weaker purifying selection. Together, these results are consistent with the idea that the SDIU and SBGE are alternative pathways towards the resolution of conflict between the sexes with distinct evolutionary consequences.

2016 ◽  
Author(s):  
Berta Verd ◽  
Anton Crombach ◽  
Johannes Jaeger

AbstractPattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network inDrosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded bybicoid (bcd)andcaudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory processes in development.Author SummaryAnimal development is a highly dynamic process. Biochemical or environmental signals can cause the rules that shape it to change over time. We know little about the effects of such changes. For the sake of simplicity, we usually leave them out of our models and experimental assays. Here, we do exactly the opposite. We characterise precisely those aspects of pattern formation caused by changing signalling inputs to a gene regulatory network, the gap gene system ofDrosophila melanogaster. Gap genes are involved in determining the body segments of flies and other insects during early development. Gradients of maternal morphogens activate the expression of the gap genes. These gradients are highly dynamic themselves, as they decay while being read out. We show that this decay controls the peak concentration of gap gene products, produces smooth boundaries of gene expression, and slows down the observed positional shifts of gap domains in the posterior of the embryo, thereby stabilising the spatial pattern. Our analysis demonstrates that the dynamics of gene regulation not only affect the timing, but also the positioning of gene expression. This suggests that we must pay closer attention to transient dynamic aspects of development than is currently the case.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 432 ◽  
Author(s):  
Bruno Gegenhuber ◽  
Jessica Tollkuhn

Females and males display differences in neural activity patterns, behavioral responses, and incidence of psychiatric and neurological diseases. Sex differences in the brain appear throughout the animal kingdom and are largely a consequence of the physiological requirements necessary for the distinct roles of the two sexes in reproduction. As with the rest of the body, gonadal steroid hormones act to specify and regulate many of these differences. It is thought that transient hormonal signaling during brain development gives rise to persistent sex differences in gene expression via an epigenetic mechanism, leading to divergent neurodevelopmental trajectories that may underlie sex differences in disease susceptibility. However, few genes with a persistent sex difference in expression have been identified, and only a handful of studies have employed genome-wide approaches to assess sex differences in epigenomic modifications. To date, there are no confirmed examples of gene regulatory elements that direct sex differences in gene expression in the brain. Here, we review foundational studies in this field, describe transcriptional mechanisms that could act downstream of hormone receptors in the brain, and suggest future approaches for identification and validation of sex-typical gene programs. We propose that sexual differentiation of the brain involves self-perpetuating transcriptional states that canalize sex-specific development.


2014 ◽  
Vol 281 (1788) ◽  
pp. 20140987 ◽  
Author(s):  
Crystal M. Vincent ◽  
Nathaniel P. Sharp

A critical task in evolutionary genetics is to explain the persistence of heritable variation in fitness-related traits such as immunity. Ecological factors can maintain genetic variation in immunity, but less is known about the role of other factors, such as antagonistic pleiotropy, on immunity. Sexually dimorphic immunity—with females often being more immune-competent—may maintain variation in immunity in dioecious populations. Most eco-immunological studies assess host resistance to parasites rather than the host's ability to maintain fitness during infection (tolerance). Distinguishing between resistance and tolerance is important as they are thought to have markedly different evolutionary and epidemiological outcomes. Few studies have investigated tolerance in animals, and the extent of sexual dimorphism in tolerance is unknown. Using males and females from 50 Drosophila melanogaster genotypes, we investigated possible sources of genetic variation for immunity by assessing both resistance and tolerance to the common bacterial pathogen Pseudomonas aeruginosa. We found evidence of sexual dimorphism and sexual antagonism for resistance and tolerance, and a trade-off between the two traits. Our findings suggest that antagonistic pleiotropy may be a major contributor to variation in immunity, with implications for host–parasite coevolution.


2014 ◽  
Vol 42 (4) ◽  
pp. 1174-1179 ◽  
Author(s):  
Monica J. Piatek ◽  
Andreas Werner

Endo-siRNAs (endogenous small-interfering RNAs) have recently emerged as versatile regulators of gene expression. They derive from double-stranded intrinsic transcripts and are processed by Dicer and associate with Argonaute proteins. In Caenorhabditis elegans, endo-siRNAs are known as 22G and 26G RNAs and are involved in genome protection and gene regulation. Drosophila melanogaster endo-siRNAs are produced with the help of specific Dicer and Argonaute isoforms and play an essential role in transposon control and the protection from viral infections. Biological functions of endo-siRNAs in vertebrates include repression of transposable elements and chromatin organization, as well as gene regulation at the transcriptional and post-transcriptional levels.


Gene expression patterns are dependent on their internal cell environment of their DNA, their immediate internal cell environment, and the integrity of their DNA. It also depends on the cell's external environment comprised of signals from other parts of the body including chemicals, nutrients, and/or mechanical stress. Gene regulation is achieved by a wide range of mechanisms that cells use to control whether genes are transcribed, when they are transcribed, and to regulate the quantity of certain proteins based on the cellular and/or environmental feedback. Proper regulation of gene expression is required by organisms to respond to continually changing environmental conditions. Some bacterial genes are transcribed as a unit under a regulatory system called an operon which contains functionally related genes. Three well studied operons include the lactose operon, histidine operon, and tryptophan operon. Gene regulation in higher organisms can occur at various stages from DNA level to protein assembly. This chapter explores this aspect of genes.


2016 ◽  
Author(s):  
Fiona C Ingleby ◽  
Claire L Webster ◽  
Tanya M Pennell ◽  
Ilona Flis ◽  
Edward H Morrow

Sexual dimorphism is predicted to be constrained by the underlying genetic architecture shared between the sexes and through ontogeny, but whole-transcriptome data for both sexes across genotypes and developmental stages are lacking. Within a quantitative genetic framework, we sequenced RNA from Drosophila melanogaster at different developmental stages to examine sex-biased gene expression and how selection acts upon it. We found evidence that gene expression is constrained by both univariate and multivariate shared genetic variation between genes, sexes and developmental stages, but may be resolved by differential splicing. These results provide a comprehensive picture of how conflict over sexual dimorphism varies through development and clarifies the conditions under which it is predicted to evolve.


2018 ◽  
Author(s):  
Gregory Stone ◽  
Ashley Choi ◽  
Meritxell Oliva ◽  
Joshua Gorham ◽  
Mahyar Heydarpour ◽  
...  

Abstract and KeywordsBackgroundSex differences exist in the prevalence, presentation, and outcomes of ischemic heart disease. Females have higher risk of heart failure post myocardial infarction relative to males and the female sex is an independent risk factor for hospital and operative mortality after cardiac surgery. However, the mechanisms underlying this sexual dimorphism remain unclear. We examined sex differences in human myocardial gene expression in response to ischemia.MethodsLeft ventricular biopsies from 68 male and 46 female patients undergoing aortic valve replacement surgery were obtained at baseline and after a median 74 minutes of cold cardioplegic arrest/ischemia and respective transcriptomes were quantified by RNA-Seq. Sex-specific responses to ischemia were quantified by differential gene expression, expression quantitative trait loci (eQTL) and pathway and functional analysis. Cell-type enrichment analysis. was used to obtain an estimate of the identity and relative proportions of different cell types present in each sample.ResultsA sex-specific response to ischemia was observed for 271 genes. Functional annotation analysis revealed sex-specific modulation of the oxytocin signaling pathway and common pathway of fibrin clot formation. The eQTL analysis identified variant-by-sex interaction eQTLs at baseline and post-ischemia, indicative of sex differences in the genotypic effects on gene expression, and cell-type enrichment analysis showed sex-bias in proportion of specific cell types.ConclusionIn response to myocardial ischemia, the human left ventricle demonstrates changes in gene expression that differ between the sexes. These differences provide insight into the sexual dimorphism of ischemic heart disease and may aid in the development of sex-specific therapies that reduce myocardial injury.


BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 654 ◽  
Author(s):  
Ana Catalán ◽  
Stephan Hutter ◽  
John Parsch

2018 ◽  
Author(s):  
Ben J. G. Sutherland ◽  
Jenni M. Prokkola ◽  
Céline Audet ◽  
Louis Bernatchez

ABSTRACTNetworks of co-expressed genes produce complex phenotypes associated with functional novelty. Sex differences in gene expression levels or in the structure of gene co-expression networks can cause sexual dimorphism and may resolve sexually antagonistic selection. Here we used RNA-sequencing in the paleopolyploid salmonid Brook Charr Salvelinus fontinalis to characterize sex-specific co-expression networks in the liver of 47 female and 53 male offspring. In both networks, modules were characterized for functional enrichment, hub gene identification, and associations with 15 growth, reproduction, and stress-related phenotypes. Modules were then evaluated for preservation in the opposite sex, and in the congener Arctic Charr Salvelinus alpinus. Overall, more transcripts were assigned to a module in the female network than in the male network, which coincided with higher inter-individual gene expression and phenotype variation in the females. Most modules were preserved between sexes and species, including those involved in conserved cellular processes (e.g. translation, immune pathways). However, two sex-specific male modules were identified, and these may contribute to sexual dimorphism. To compare with the network analysis, differentially expressed transcripts were identified between the sexes, finding a total of 16% of expressed transcripts as sex-biased. For both sexes, there was no overrepresentation of sex-biased genes or sex-specific modules on the putative sex chromosome. Sex-biased transcripts were also not overrepresented in sex-specific modules, and in fact highly male-biased transcripts were enriched in preserved modules. Comparative network analysis and differential expression analyses identified different aspects of sex differences in gene expression, and both provided new insights on the genes underlying sexual dimorphism in the salmonid Brook Charr.


2020 ◽  
Author(s):  
Colleen M Palmateer ◽  
Shawn C Moseley ◽  
Surjyendu Ray ◽  
Savannah G Brovero ◽  
Michelle N Arbeitman

AbstractExamining the role of chromatin modifications and gene expression in neurons is critical for understanding how the potential for behaviors are established and maintained. We investigate this question by examining Drosophila melanogaster fru P1 neurons that underlie reproductive behaviors in both sexes. We developed a method to purify cell-type-specific chromatin (Chromatag), using a tagged histone H2B variant that is expressed using the versatile Gal4/UAS gene expression system. Here, we use Chromatag to evaluate five chromatin modifications, at three life stages in both sexes. We find substantial changes in chromatin modification profiles across development and fewer differences between males and females. We generated cell-type-specific RNA-seq data sets, using translating ribosome affinity purification (TRAP), and identify actively translated genes in fru P1 neurons, revealing novel stage- and sex-differences in gene expression. We compare chromatin modifications to the gene expression data and find patterns of chromatin modifications associated with gene expression. An examination of the genic features where chromatin modifications resides shows certain chromatin modifications are maintained in the same genes across development, whereas others are more dynamic, which may point to modifications important for cell fate determination in neurons. Using a computational analysis to identify super-enhancer-containing genes we discovered differences across development, and between the sexes that are cell-type-specific. A set of super-enhancer-containing genes that overlapped with those determined to be expressed with the TRAP approach were validated as expressed in fru P1 neurons.Author SummaryDifferences in male and female reproductive behaviors are pervasive in nature and important for species propagation. Studies of sex differences in the fruit fly, Drosophila melanogaster, have been ongoing since the early 1900s, with many of the critical molecular and neural circuit determinates that create sexually dimorphic behavior identified. This system is a powerful model to understand fundamental principles about the underpinnings of complex behavior at high resolution. In this study, we examine the gene expression and chromatin modification differences specifically in a set of neurons that direct male and female reproductive behaviors in Drosophila. We describe differences across development and between the sexes with the goal of understanding how the potential for behavior is created and maintained.


Sign in / Sign up

Export Citation Format

Share Document