scholarly journals A FLIC motility assay reveals myosin-6 coordination limited by actin filament buckling

2016 ◽  
Author(s):  
Agata K. Krenc ◽  
Jagoda J. Rokicka ◽  
Ronald S. Rock

ABSTRACTTeams of myosin motors carry out intracellular transport and contract the actin cytoskeleton. To fully understand the behavior of multi-myosin ensembles we need to know the properties of individual myosins and the mode of interaction between them. Current models of the interactions within the myosin complex treat the actin filament as a stiff rod, not contributing to the regulation of collective myosin dynamics. Here, we present data suggesting that force transduction through the actin filament is an important element of interaction within myosin-6 ensembles in vitro. Multiple myosin-6s coordinate their steps if they are separated by a short (and therefore high-force bearing) segment of actin. The measurements were performed using Fluorescence Interference Contrast Microscopy (FLIC) to measure small changes in the height of fluorescently labeled actin. Using FLIC, we assign the positions of myosins in a gliding filament assay geometry and measure their attachment time to actin. We also identify actin segments that are buckled or under tension. We show that myosin-6 holds actin about 10 nm above the surface. However, due to asynchronous myosin stepping, frequent buckles up to about 60 nm high appear. The buckle lifetime decreases as the distance between the myosin-6s is reduced, a sign of inter-motor coordination. Our data are consistent with coordinated stepping of closely spaced myosins, but uncoordinated motility with widely separated myosins where buckles can form. These features would be expected to operate on myosins in the cell, where motor spacing may vary considerably depending on the target organelle.SIGNIFICANCE STATEMENTMyosins are molecular motors that carry out intracellular transport. Interactions between the myosins are crucial for understanding their function. Using Fluorescence Interference Contrast (FLIC) microscopy we characterized the interaction between multiple myosin-6 motors immobilized to the surface of a slide and pulling the same actin filament. Our results point towards coordination of myosin steps as a mechanism governing the behavior of a multi-myosin complex. We also demonstrated the unique application of FLIC microscopy for highly parallel identification and measurement of single myosin motors in a gliding filament format. These features of FLIC enable a robust study of collective myosin dynamics.

2017 ◽  
Author(s):  
César Díaz-Celis ◽  
Viviana I. Risca ◽  
Felipe Hurtado ◽  
Jessica K. Polka ◽  
Scott D. Hansen ◽  
...  

AbstractBacteria of the genusProsthecobacterexpress homologs of eukaryotic α-and β-tubulin, called BtubA and BtubB, that have been observed to assemble into bacterial microtubules (bMTs). ThebtubABgenes likely entered theProsthecobacterlineage via horizontal gene transfer and may derive from an early ancestor of the modern eukaryotic microtubule (MT). Previous biochemical studies revealed that BtubA/B polymerization is GTP-dependent and reversible and that BtubA/B folding does not require chaperones. To better understand bMT behavior and gain insight into the evolution of microtubule dynamics, we characterizedin vitrobMT assembly using a combination of polymerization kinetics assays, and microscopy. Like eukaryotic microtubules, bMTs exhibit polarized growth with different assembly rates at each end. GTP hydrolysis stimulated by bMT polymerization drives a stochastic mechanism of bMT disassembly that occurs via polymer breakage. We also observed treadmilling (continuous addition and loss of subunits at opposite ends) of bMT fragments. Unlike MTs, polymerization of bMTs requires KCl, which reduces the critical concentration for BtubA/B assembly and induces bMTs to form stable mixed-orientation bundles in the absence of any additional bMT-binding proteins. Our results suggest that at potassium concentrations resembling that inside the cytoplasm ofProsthecobacter, bMT stabilization through self-association may be a default behavior. The complex dynamics we observe in both stabilized and unstabilized bMTs may reflect common properties of an ancestral eukaryotic tubulin polymer.ImportanceMicrotubules are polymers within all eukaryotic cells that perform critical functions: they segregate chromosomes in cell division, organize intracellular transport by serving as tracks for molecular motors, and support the flagella that allow sperm to swim. These functions rely on microtubules remarkable range of tunable dynamic behaviors. Recently discovered bacterial microtubules composed of an evolutionarily related protein are evolved from a missing link in microtubule evolution, the ancestral eukaryotic tubulin polymer. Using microscopy and biochemical approaches to characterize bacterial microtubules, we observed that they exhibit complex and structurally polarized dynamic behavior like eukaryotic microtubules, but differ in how they self-associate into bundles and become destabilized. Our results demonstrate the diversity of mechanisms that microtubule-like filaments employ to promote filament dynamics and monomer turnover.


2019 ◽  
Vol 116 (13) ◽  
pp. 6152-6161 ◽  
Author(s):  
Kristin I. Schimert ◽  
Breane G. Budaitis ◽  
Dana N. Reinemann ◽  
Matthew J. Lang ◽  
Kristen J. Verhey

Kinesin motor proteins that drive intracellular transport share an overall architecture of two motor domain-containing subunits that dimerize through a coiled-coil stalk. Dimerization allows kinesins to be processive motors, taking many steps along the microtubule track before detaching. However, whether dimerization is required for intracellular transport remains unknown. Here, we address this issue using a combination of in vitro and cellular assays to directly compare dimeric motors across the kinesin-1, -2, and -3 families to their minimal monomeric forms. Surprisingly, we find that monomeric motors are able to work in teams to drive peroxisome dispersion in cells. However, peroxisome transport requires minimal force output, and we find that most monomeric motors are unable to disperse the Golgi complex, a high-load cargo. Strikingly, monomeric versions of the kinesin-2 family motors KIF3A and KIF3B are able to drive Golgi dispersion in cells, and teams of monomeric KIF3B motors can generate over 8 pN of force in an optical trap. We find that intracellular transport and force output by monomeric motors, but not dimeric motors, are significantly decreased by the addition of longer and more flexible motor-to-cargo linkers. Together, these results suggest that dimerization of kinesin motors is not required for intracellular transport; however, it enables motor-to-motor coordination and high force generation regardless of motor-to-cargo distance. Dimerization of kinesin motors is thus critical for cellular events that require an ability to generate or withstand high forces.


2014 ◽  
Vol 207 (3) ◽  
pp. 393-406 ◽  
Author(s):  
Stephen R. Norris ◽  
Virupakshi Soppina ◽  
Aslan S. Dizaji ◽  
Kristin I. Schimert ◽  
David Sept ◽  
...  

Teams of processive molecular motors are critical for intracellular transport and organization, yet coordination between motors remains poorly understood. Here, we develop a system using protein components to generate assemblies of defined spacing and composition inside cells. This system is applicable to studying macromolecular complexes in the context of cell signaling, motility, and intracellular trafficking. We use the system to study the emergent behavior of kinesin motors in teams. We find that two kinesin motors in complex act independently (do not help or hinder each other) and can alternate their activities. For complexes containing a slow kinesin-1 and fast kinesin-3 motor, the slow motor dominates motility in vitro but the fast motor can dominate on certain subpopulations of microtubules in cells. Both motors showed dynamic interactions with the complex, suggesting that motor–cargo linkages are sensitive to forces applied by the motors. We conclude that kinesin motors in complex act independently in a manner regulated by the microtubule track.


1981 ◽  
Author(s):  
G Janzarik

The morphologic criteria of vital avian throm- bocytoid cells are not well established. In the present study the different forms of chicken and duck thrombocytoid cells have been analyzed by phase and interference contrast microscopy and compared with those of erythrocytes, erythrocyte ghosts, granulocytes, monocytes, and lymphoid cells.Since the nucleated thrombocytoid cells do not differ in size from the other white blood cells, they can easily be confused with them and even with the nucleated erythrocyte ghosts which also are capable of adhesion and aggregation but do not spread. According to previous investigations using membrane immunofluorescence tests, thrombocytoid cells may be closely related or identical with B lymphocytes (Janzarik et al. Developmental and Comparative Immunology 1980, 4,123). However, thrombocytoid cells are the only cells with platelet-like spreading and strong adhesion to collagen fibrils. In fresh blood specimens they are spherical and cannot be differentiated morphologically from lymphoid cells. After aging in vitro, suspended thrombocytoid cells elongate to spindle forms.


2017 ◽  
Vol 28 (3) ◽  
pp. 463-475 ◽  
Author(s):  
Jonathan E. Bird ◽  
Melanie Barzik ◽  
Meghan C. Drummond ◽  
Daniel C. Sutton ◽  
Spencer M. Goodman ◽  
...  

Protein–protein interactions (PPIs) regulate assembly of macromolecular complexes, yet remain challenging to study within the native cytoplasm where they normally exert their biological effect. Here we miniaturize the concept of affinity pulldown, a gold-standard in vitro PPI interrogation technique, to perform nanoscale pulldowns (NanoSPDs) within living cells. NanoSPD hijacks the normal process of intracellular trafficking by myosin motors to forcibly pull fluorescently tagged protein complexes along filopodial actin filaments. Using dual-color total internal reflection fluorescence microscopy, we demonstrate complex formation by showing that bait and prey molecules are simultaneously trafficked and actively concentrated into a nanoscopic volume at the tips of filopodia. The resulting molecular traffic jams at filopodial tips amplify fluorescence intensities and allow PPIs to be interrogated using standard epifluorescence microscopy. A rigorous quantification framework and software tool are provided to statistically evaluate NanoSPD data sets. We demonstrate the capabilities of NanoSPD for a range of nuclear and cytoplasmic PPIs implicated in human deafness, in addition to dissecting these interactions using domain mapping and mutagenesis experiments. The NanoSPD methodology is extensible for use with other fluorescent molecules, in addition to proteins, and the platform can be easily scaled for high-throughput applications.


2013 ◽  
Vol 24 (15) ◽  
pp. 2299-2302 ◽  
Author(s):  
William Brieher

The actin cytoskeleton is constantly assembling and disassembling. Cells harness the energy of these turnover dynamics to drive cell motility and organize cytoplasm. Although much is known about how cells control actin polymerization, we do not understand how actin filaments depolymerize inside cells. I briefly describe how the combination of imaging actin filament dynamics in cells and using in vitro biochemistry progressively altered our views of actin depolymerization. I describe why I do not think that the prevailing model of actin filament turnover—cofilin-mediated actin filament severing—can account for actin filament disassembly detected in cells. Finally, I speculate that cells might be able to tune the mechanism of actin depolymerization to meet physiological demands and selectively control the stabilities of different actin arrays.


2014 ◽  
Vol 306 (7) ◽  
pp. L672-L683 ◽  
Author(s):  
Sanjeev Kumar Mahto ◽  
Janna Tenenbaum-Katan ◽  
Ayala Greenblum ◽  
Barbara Rothen-Rutishauser ◽  
Josué Sznitman

We investigated the role of flow-induced shear stress on the mechanisms regulating surfactant secretion in type II alveolar epithelial cells (ATII) using microfluidic models. Following flow stimulation spanning a range of wall shear stress (WSS) magnitudes, monolayers of ATII (MLE-12 and A549) cells were examined for surfactant secretion by evaluating essential steps of the process, including relative changes in the number of fusion events of lamellar bodies (LBs) with the plasma membrane (PM) and intracellular redistribution of LBs. F-actin cytoskeleton and calcium levels were analyzed in A549 cells subjected to WSS spanning 4–20 dyn/cm2. Results reveal an enhancement in LB fusion events with the PM in MLE-12 cells upon flow stimulation, whereas A549 cells exhibit no foreseeable changes in the monitored number of fusion events for WSS levels ranging up to a threshold of ∼8 dyn/cm2; above this threshold, we witness instead a decrease in LB fusion events in A549 cells. However, patterns of LB redistribution suggest that WSS can potentially serve as a stimulus for A549 cells to trigger the intracellular transport of LBs toward the cell periphery. This observation is accompanied by a fragmentation of F-actin, indicating that disorganization of the F-actin cytoskeleton might act as a limiting factor for LB fusion events. Moreover, we note a rise in cytosolic calcium ([Ca2+]c) levels following stimulation of A549 cells with WSS magnitudes ranging near or above the experimental threshold. Overall, WSS stimulation can influence key components of molecular machinery for regulated surfactant secretion in ATII cells in vitro.


2019 ◽  
Vol 9 (2) ◽  
pp. 20180061 ◽  
Author(s):  
Xinyue Chen ◽  
Ralf P. Richter

Hyaluronan (HA) is a linear, regular polysaccharide that plays as a chief structural and functional component in peri- and extracellular matrices, thus contributing significantly to many basic cellular processes. To understand more comprehensively the response of the supramolecular organization of HA polymers to changes in their aqueous environment, we study the effects of Ca 2+ concentration and pH on the morphology and rigidity of films of end-grafted HA polymers on planar supports (HA brushes), as a well-defined in vitro model system of HA-rich matrices, by reflection interference contrast microscopy and quartz crystal microbalance. The thickness and softness of HA brushes decrease significantly with Ca 2+ concentration but do not change with pH, within the physiological ranges of these parameters. The effect of Ca 2+ on HA brush thickness is virtually identical to the effect of Na + at 10-fold higher concentrations. Moreover, the thickness and softness of HA brushes decrease appreciably upon HA protonation at pH less than 6. Effects of pH and calcium ions are fully reversible over large parameter ranges. These findings are relevant for understanding the supramolecular organization and dynamics of HA-rich matrices in biological systems and will also benefit the rational design of synthetic HA-rich materials with tailored properties.


2007 ◽  
Vol 18 (8) ◽  
pp. 3002-3014 ◽  
Author(s):  
Faisal Chaudhry ◽  
Christophe Guérin ◽  
Matthias von Witsch ◽  
Laurent Blanchoin ◽  
Christopher J. Staiger

The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP–actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP– and ATP–monomeric actin (Kd ∼ 1.3 μM). Binding of AtCAP1 to ATP–actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux of subunits through actin filament barbed ends. Collectively, these results and our understanding of other actin-binding proteins implicate CAP1 as a central player in regulating the pool of unpolymerized ATP–actin.


Author(s):  
Ondřej Kučera ◽  
Daniel Janda ◽  
Valerie Siahaan ◽  
Sietske H. Dijkstra ◽  
Eliška Pilátová ◽  
...  

AbstractConstriction of the actin cytokinetic ring is an essential step of cell division. In a generally accepted view, the constriction is driven by relative sliding of actin filaments propelled by myosin motors. However, in multiple organisms, the ring constriction is myosin independent. How actin rings constrict in the absence of motor activity remains unclear. Here, we demonstrate that actin contractility can be propelled by anillin, a diffusible non-motor actin crosslinker, localising to the cytokinetic ring. We in vitro observed the formation and constriction of rings comprising multiple actin filaments bundled by anillin. Rings constricted due to anillin-generated forces maximising the overlap lengths between the filaments. Actin disassembly promoted constriction. We propose that actin crosslinkers, generating forces complementary to molecular motors, contribute to the contractility of diverse actin structures, including the cytokinetic ring.


Sign in / Sign up

Export Citation Format

Share Document