scholarly journals Bacterial genome reduction as a result of short read sequence assembly

2016 ◽  
Author(s):  
Charles H.D. Williamson ◽  
Andrew Sanchez ◽  
Adam Vazquez ◽  
Joshua Gutman ◽  
Jason W. Sahl

AbstractHigh-throughput comparative genomics has changed our view of bacterial evolution and relatedness. Many genomic comparisons, especially those regarding the accessory genome that is variably conserved across strains in a species, are performed using assembled genomes. For completed genomes, an assumption is made that the entire genome was incorporated into the genome assembly, while for draft assemblies, often constructed from short sequence reads, an assumption is made that genome assembly is an approximation of the entire genome. To understand the potential effects of short read assemblies on the estimation of the complete genome, we downloaded all completed bacterial genomes from GenBank, simulated short reads, assembled the simulated short reads and compared the resulting assembly to the completed assembly. Although most simulated assemblies demonstrated little reduction, others were reduced by as much as 25%, which was correlated with the repeat structure of the genome. A comparative analysis of lost coding region sequences demonstrated that up to 48 CDSs or up to ~112,000 bases of coding region sequence, were missing from some draft assemblies compared to their finished counterparts. Although this effect was observed to some extent in 32% of genomes, only minimal effects were observed on pan-genome statistics when using simulated draft genome assemblies. The benefits and limitations of using draft genome assemblies should be fully realized before interpreting data from assembly-based comparative analyses.

2015 ◽  
Author(s):  
Neeraja M Krishnan ◽  
Prachi Jain ◽  
Saurabh Gupta ◽  
Arun K Hariharan ◽  
Binay Panda

Neem (Azadirachta indica A. Juss.), an evergreen tree of the Meliaceae family, is known for its medicinal, cosmetic, pesticidal and insecticidal properties. We had previously sequenced and published the draft genome of the plant, using mainly short read sequencing data. In this report, we present an improved genome assembly generated using additional short reads from Illumina and long reads from Pacific Biosciences SMRT sequencer. We assembled short reads and error corrected long reads using Platanus, an assembler designed to perform well for heterozygous genomes. The updated genome assembly (v2.0) yielded 3- and 3.5-fold increase in N50 and N75, respectively; 2.6-fold decrease in the total number of scaffolds; 1.25-fold increase in the number of valid transcriptome alignments; 13.4-fold less mis-assembly and 1.85-fold increase in the percentage repeat, over the earlier assembly (v1.0). The current assembly also maps better to the genes known to be involved in the terpenoid biosynthesis pathway. Together, the data represents an improved assembly of the A. indica genome. The raw data described in this manuscript are submitted to the NCBI Short Read Archive under the accession numbers SRX1074131, SRX1074132, SRX1074133, and SRX1074134 (SRP013453).


2021 ◽  
Author(s):  
Ryan R Wick ◽  
Kathryn E Holt

Long-read-only bacterial genome assemblies usually contain residual errors, most commonly homopolymer-length errors. Short-read polishing tools can use short reads to fix these errors, but most rely on short-read alignment which is unreliable in repeat regions. Errors in such regions are therefore challenging to fix and often remain after short-read polishing. Here we introduce Polypolish, a new short-read polisher which uses all-per-read alignments to repair errors in repeat sequences that other polishers cannot. In benchmarking tests using both simulated and real reads, we find that Polypolish performs well, and the best results are achieved by using Polypolish in combination with other short-read polishers.


Author(s):  
Ezequiel G Mogro ◽  
Nicolás M Ambrosis ◽  
Mauricio J Lozano

Abstract Bacterial genomes are composed of core and accessory genomes. The first is composed of housekeeping and essential genes, while the second is highly enriched in mobile genetic elements, including transposable elements (TEs). Insertion sequences (ISs), the smallest TEs, have an important role in genome evolution, and contribute to bacterial genome plasticity and adaptability. ISs can spread in a genome, presenting different locations in nearly related strains, and producing phenotypic variations. Few tools are available which can identify differentially located ISs (DLISs) on assembled genomes. Here, we introduce ISCompare, a new program to profile IS mobilization events in related bacterial strains using complete or draft genome assemblies. ISCompare was validated using artificial genomes with simulated random IS insertions and real sequences, achieving the same or better results than other available tools, with the advantage that ISCompare can analyze multiple ISs at the same time and outputs a list of candidate DLISs. ISCompare provides an easy and straightforward approach to look for differentially located ISs on bacterial genomes.


2018 ◽  
Author(s):  
Martin Ayling ◽  
Matthew D Clark ◽  
Richard M Leggett

In recent years, the use of longer-range read data combined with advances in assembly algorithms has stimulated big improvements in the contiguity and quality of genome assemblies. However, these advances have not directly transferred to metagenomic datasets, as assumptions made by the single genome assembly algorithms do not apply when assembling multiple genomes at varying levels of abundance. The development of dedicated assemblers for metagenomic data was a relatively late innovation and for many years, researchers had to make do using tools designed for single genomes. This has changed in the last few years and we have seen the emergence of a new type of tool built using different principles. In this review, we describe the challenges inherent in metagenomic assemblies and compare the different approaches taken by these novel assembly tools.


GigaScience ◽  
2019 ◽  
Vol 8 (8) ◽  
Author(s):  
Xin Jiang ◽  
Qian Zhang ◽  
Yaoguo Qin ◽  
Hang Yin ◽  
Siyu Zhang ◽  
...  

AbstractBackgroundSitobion miscanthi is an ideal model for studying host plant specificity, parthenogenesis-based phenotypic plasticity, and interactions between insects and other species of various trophic levels, such as viruses, bacteria, plants, and natural enemies. However, the genome information for this species has not yet to be sequenced and published. Here, we analyzed the entire genome of a parthenogenetic female aphid colony using Pacific Biosciences long-read sequencing and Hi-C data to generate chromosome-length scaffolds and a highly contiguous genome assembly.ResultsThe final draft genome assembly from 33.88 Gb of raw data was ∼397.90 Mb in size, with a 2.05 Mb contig N50. Nine chromosomes were further assembled based on Hi-C data to a 377.19 Mb final size with a 36.26 Mb scaffold N50. The identified repeat sequences accounted for 26.41% of the genome, and 16,006 protein-coding genes were annotated. According to the phylogenetic analysis, S. miscanthi is closely related to Acyrthosiphon pisum, with S. miscanthi diverging from their common ancestor ∼25.0–44.9 million years ago.ConclusionsWe generated a high-quality draft of the S. miscanthi genome. This genome assembly should help promote research on the lifestyle and feeding specificity of aphids and their interactions with each other and species at other trophic levels. It can serve as a resource for accelerating genome-assisted improvements in insecticide-resistant management and environmentally safe aphid management.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Parul Mittal ◽  
Shubham K. Jaiswal ◽  
Nagarjun Vijay ◽  
Rituja Saxena ◽  
Vineet K. Sharma

AbstractThe availability of completed and draft genome assemblies of tiger, leopard, and other felids provides an opportunity to gain comparative insights on their unique evolutionary adaptations. However, genome-wide comparative analyses are susceptible to errors in genome sequences and thus require accurate genome assemblies for reliable evolutionary insights. In this study, while analyzing the tiger genome, we found almost one million erroneous substitutions in the coding and non-coding region of the genome affecting 4,472 genes, hence, biasing the current understanding of tiger evolution. Moreover, these errors produced several misleading observations in previous studies. Thus, to gain insights into the tiger evolution, we corrected the erroneous bases in the genome assembly and gene set of tiger using ‘SeqBug’ approach developed in this study. We sequenced the first Bengal tiger genome and transcriptome from India to validate these corrections. A comprehensive evolutionary analysis was performed using 10,920 orthologs from nine mammalian species including the corrected gene sets of tiger and leopard and using five different methods at three hierarchical levels, i.e. felids, Panthera, and tiger. The unique genetic changes in tiger revealed that the genes showing signatures of adaptation in tiger were enriched in development and neuronal functioning. Specifically, the genes belonging to the Notch signalling pathway, which is among the most conserved pathways involved in embryonic and neuronal development, were found to have significantly diverged in tiger in comparison to the other mammals. Our findings suggest the role of adaptive evolution in neuronal functions and development processes, which correlates well with the presence of exceptional traits such as sensory perception, strong neuro-muscular coordination, and hypercarnivorous behaviour in tiger.


GigaScience ◽  
2020 ◽  
Vol 9 (6) ◽  
Author(s):  
Lisa K Johnson ◽  
Ruta Sahasrabudhe ◽  
James Anthony Gill ◽  
Jennifer L Roach ◽  
Lutz Froenicke ◽  
...  

Abstract Background Whole-genome sequencing data from wild-caught individuals of closely related North American killifish species (Fundulus xenicus, Fundulus catenatus, Fundulus nottii, and Fundulus olivaceus) were obtained using long-read Oxford Nanopore Technology (ONT) PromethION and short-read Illumina platforms. Findings Draft de novo reference genome assemblies were generated using a combination of long and short sequencing reads. For each species, the PromethION platform was used to generate 30–45× sequence coverage, and the Illumina platform was used to generate 50–160× sequence coverage. Illumina-only assemblies were fragmented with high numbers of contigs, while ONT-only assemblies were error prone with low BUSCO scores. The highest N50 values, ranging from 0.4 to 2.7 Mb, were from assemblies generated using a combination of short- and long-read data. BUSCO scores were consistently >90% complete using the Eukaryota database. Conclusions High-quality genomes can be obtained from a combination of using short-read Illumina data to polish assemblies generated with long-read ONT data. Draft assemblies and raw sequencing data are available for public use. We encourage use and reuse of these data for assembly benchmarking and other analyses.


2021 ◽  
Author(s):  
Lauren Coombe ◽  
Janet X Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 2.0-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently runs in under five hours using less than 23GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


2019 ◽  
Author(s):  
Sergio Arredondo-Alonso ◽  
Martin Bootsma ◽  
Yaïr Hein ◽  
Malbert R.C. Rogers ◽  
Jukka Corander ◽  
...  

ABSTRACTSummaryPlasmids can horizontally transmit genetic traits, enabling rapid bacterial adaptation to new environments and hosts. Short-read whole-genome sequencing data is often applied to large-scale bacterial comparative genomics projects but the reconstruction of plasmids from these data is facing severe limitations, such as the inability to distinguish plasmids from each other in a bacterial genome. We developed gplas, a new approach to reliably separate plasmid contigs into discrete components using sequence composition, coverage, assembly graph information and clustering based on a pruned network of plasmid unitigs. Gplas facilitates the analysis of large numbers of bacterial isolates and allows a detailed analysis of plasmid epidemiology based solely on short read sequence data.Availability and implementationGplas is written in R, Bash and uses a Snakemake pipeline as a workflow management system. Gplas is available under the GNU General Public License v3.0 at https://gitlab.com/sirarredondo/[email protected]


Author(s):  
Stephen R. Doyle ◽  
Alan Tracey ◽  
Roz Laing ◽  
Nancy Holroyd ◽  
David Bartley ◽  
...  

AbstractBackgroundHaemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants, and has become the key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Two draft genome assemblies for H. contortus were reported in 2013, however, both were highly fragmented, incomplete, and differed from one another in important respects. While the introduction of long-read sequencing has significantly increased the rate of production and contiguity of de novo genome assemblies broadly, achieving high quality genome assemblies for small, genetically diverse, outcrossing eukaryotic organisms such as H. contortus remains a significant challenge.ResultsHere, we report using PacBio long read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome. We show a remarkable pattern of almost complete conservation of chromosome content (synteny) with Caenorhabditis elegans, but almost no conservation of gene order. Long-read transcriptome sequence data has allowed us to define coordinated transcriptional regulation throughout the life cycle of the parasite, and refine our understanding of cis- and trans-splicing relative to that observed in C. elegans. Finally, we use this assembly to give a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally.ConclusionsThe H. contortus MHco3(ISE).N1 genome assembly presented here represents the most contiguous and resolved nematode assembly outside of the Caenorhabditis genus to date, together with one of the highest-quality set of predicted gene features. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes, and extends the experimental tractability of this model parasitic nematode in understanding pathogen biology, drug discovery and vaccine development, and important adaptive traits such as drug resistance.


Sign in / Sign up

Export Citation Format

Share Document