scholarly journals Validation and Implementation of CLIA-Compliant Whole Genome Sequencing (WGS) in Public Health Laboratory

2017 ◽  
Author(s):  
Varvara K. Kozyreva ◽  
Chau-Linda Truong ◽  
Alexander L. Greninger ◽  
John Crandall ◽  
Rituparna Mukhopadhyay ◽  
...  

AbstractBackgroundPublic health microbiology laboratories (PHL) are at the cusp of unprecedented improvements in pathogen identification, antibiotic resistance detection, and outbreak investigation by using whole genome sequencing (WGS). However, considerable challenges remain due to the lack of common standards.Objectives1) Establish the performance specifications of WGS applications used in PHL to conform with CLIA (Clinical Laboratory Improvements Act) guidelines for laboratory developed tests (LDT), 2) Develop quality assurance (QA) and quality control (QC) measures, 3) Establish reporting language for end users with or without WGS expertise, 4) Create a validation set of microorganisms to be used for future validations of WGS platforms and multi-laboratory comparisons and, 5) Create modular templates for the validation of different sequencing platforms.MethodsMiSeq Sequencer and Illumina chemistry (Illumina, Inc.) were used to generate genomes for 34 bacterial isolates with genome sizes from 1.8 to 4.7 Mb and wide range of GC content (32.1%-66.1%). A customized CLCbio Genomics Workbench - shell script bioinformatics pipeline was used for the data analysis.ResultsWe developed a validation panel comprising ten Enterobacteriaceae isolates, five gram-positive cocci, five gram-negative non-fermenting species, nine Mycobacterium tuberculosis, and five miscellaneous bacteria; the set represented typical workflow in the PHL. The accuracy of MiSeq platform for individual base calling was >99.9% with similar results shown for reproducibility/repeatability of genome-wide base calling. The accuracy of phylogenetic analysis was 100%. The specificity and sensitivity inferred from MLST and genotyping tests were 100%. A test report format was developed for the end users with and without WGS knowledge.ConclusionWGS was validated for routine use in PHL according to CLIA guidelines for LDTs. The validation panel, sequencing analytics, and raw sequences will be available for future multi-laboratory comparisons of WGS in PHL. Additionally, the WGS performance specifications and modular validation template are likely to be adaptable for the validation of other platforms and reagents kits.

2017 ◽  
Vol 55 (8) ◽  
pp. 2502-2520 ◽  
Author(s):  
Varvara K. Kozyreva ◽  
Chau-Linda Truong ◽  
Alexander L. Greninger ◽  
John Crandall ◽  
Rituparna Mukhopadhyay ◽  
...  

ABSTRACT Public health microbiology laboratories (PHLs) are on the cusp of unprecedented improvements in pathogen identification, antibiotic resistance detection, and outbreak investigation by using whole-genome sequencing (WGS). However, considerable challenges remain due to the lack of common standards. Here, we describe the validation of WGS on the Illumina platform for routine use in PHLs according to Clinical Laboratory Improvements Act (CLIA) guidelines for laboratory-developed tests (LDTs). We developed a validation panel comprising 10 Enterobacteriaceae isolates, 5 Gram-positive cocci, 5 Gram-negative nonfermenting species, 9 Mycobacterium tuberculosis isolates, and 5 miscellaneous bacteria. The genome coverage range was 15.71× to 216.4× (average, 79.72×; median, 71.55×); the limit of detection (LOD) for single nucleotide polymorphisms (SNPs) was 60×. The accuracy, reproducibility, and repeatability of base calling were >99.9%. The accuracy of phylogenetic analysis was 100%. The specificity and sensitivity inferred from multilocus sequence typing (MLST) and genome-wide SNP-based phylogenetic assays were 100%. The following objectives were accomplished: (i) the establishment of the performance specifications for WGS applications in PHLs according to CLIA guidelines, (ii) the development of quality assurance and quality control measures, (iii) the development of a reporting format for end users with or without WGS expertise, (iv) the availability of a validation set of microorganisms, and (v) the creation of a modular template for the validation of WGS processes in PHLs. The validation panel, sequencing analytics, and raw sequences could facilitate multilaboratory comparisons of WGS data. Additionally, the WGS performance specifications and modular template are adaptable for the validation of other platforms and reagent kits.


2020 ◽  
Vol 58 (4) ◽  
Author(s):  
Ellen N. Kersh ◽  
Cau D. Pham ◽  
John R. Papp ◽  
Robert Myers ◽  
Richard Steece ◽  
...  

ABSTRACT U.S. gonorrhea rates are rising, and antibiotic-resistant Neisseria gonorrhoeae (AR-Ng) is an urgent public health threat. Since implementation of nucleic acid amplification tests for N. gonorrhoeae identification, the capacity for culturing N. gonorrhoeae in the United States has declined, along with the ability to perform culture-based antimicrobial susceptibility testing (AST). Yet AST is critical for detecting and monitoring AR-Ng. In 2016, the CDC established the Antibiotic Resistance Laboratory Network (AR Lab Network) to shore up the national capacity for detecting several resistance threats including N. gonorrhoeae. AR-Ng testing, a subactivity of the CDC’s AR Lab Network, is performed in a tiered network of approximately 35 local laboratories, four regional laboratories (state public health laboratories in Maryland, Tennessee, Texas, and Washington), and the CDC’s national reference laboratory. Local laboratories receive specimens from approximately 60 clinics associated with the Gonococcal Isolate Surveillance Project (GISP), enhanced GISP (eGISP), and the program Strengthening the U.S. Response to Resistant Gonorrhea (SURRG). They isolate and ship up to 20,000 isolates to regional laboratories for culture-based agar dilution AST with seven antibiotics and for whole-genome sequencing of up to 5,000 isolates. The CDC further examines concerning isolates and monitors genetic AR markers. During 2017 and 2018, the network tested 8,214 and 8,628 N. gonorrhoeae isolates, respectively, and the CDC received 531 and 646 concerning isolates and 605 and 3,159 sequences, respectively. In summary, the AR Lab Network supported the laboratory capacity for N. gonorrhoeae AST and associated genetic marker detection, expanding preexisting notification and analysis systems for resistance detection. Continued, robust AST and genomic capacity can help inform national public health monitoring and intervention.


2019 ◽  
Author(s):  
Junhua Rao ◽  
Lihua Peng ◽  
Fang Chen ◽  
Hui Jiang ◽  
Chunyu Geng ◽  
...  

AbstractBackgroundNext-generation sequence (NGS) has rapidly developed in past years which makes whole-genome sequencing (WGS) becoming a more cost- and time-efficient choice in wide range of biological researches. We usually focus on some variant detection via WGS data, such as detection of single nucleotide polymorphism (SNP), insertion and deletion (Indel) and copy number variant (CNV), which playing an important role in many human diseases. However, the feasibility of CNV detection based on WGS by DNBSEQ™ platforms was unclear. We systematically analysed the genome-wide CNV detection power of DNBSEQ™ platforms and Illumina platforms on NA12878 with five commonly used tools, respectively.ResultsDNBSEQ™ platforms showed stable ability to detect slighter more CNVs on genome-wide (average 1.24-fold than Illumina platforms). Then, CNVs based on DNBSEQ™ platforms and Illumina platforms were evaluated with two public benchmarks of NA12878, respectively. DNBSEQ™ and Illumina platforms showed similar sensitivities and precisions on both two benchmarks. Further, the difference between tools for CNV detection was analyzed, and indicated the selection of tool for CNV detection could affected the CNV performance, such as count, distribution, sensitivity and precision.ConclusionThe major contribution of this paper is providing a comprehensive guide for CNV detection based on WGS by DNBSEQ™ platforms for the first time.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253440
Author(s):  
Samantha Gunasekera ◽  
Sam Abraham ◽  
Marc Stegger ◽  
Stanley Pang ◽  
Penghao Wang ◽  
...  

Whole-genome sequencing is essential to many facets of infectious disease research. However, technical limitations such as bias in coverage and tagmentation, and difficulties characterising genomic regions with extreme GC content have created significant obstacles in its use. Illumina has claimed that the recently released DNA Prep library preparation kit, formerly known as Nextera Flex, overcomes some of these limitations. This study aimed to assess bias in coverage, tagmentation, GC content, average fragment size distribution, and de novo assembly quality using both the Nextera XT and DNA Prep kits from Illumina. When performing whole-genome sequencing on Escherichia coli and where coverage bias is the main concern, the DNA Prep kit may provide higher quality results; though de novo assembly quality, tagmentation bias and GC content related bias are unlikely to improve. Based on these results, laboratories with existing workflows based on Nextera XT would see minor benefits in transitioning to the DNA Prep kit if they were primarily studying organisms with neutral GC content.


2018 ◽  
Author(s):  
David R. Greig ◽  
Ulf Schafer ◽  
Sophie Octavia ◽  
Ebony Hunter ◽  
Marie A. Chattaway ◽  
...  

AbstractEpidemiological and microbiological data on Vibrio cholerae isolated between 2004 and 2017 (n=836) and held in the Public Health England culture archive were reviewed. The traditional biochemical species identification and serological typing results were compared with the genome derived species identification and serotype for a sub-set of isolates (n=152). Of the 836 isolates, 750 (89.7%) were from faecal specimens, 206 (24.6%) belonged to serogroup O1 and seven (0.8%) were serogroup O139, and 792 (94.7%) isolates from patients reporting recent travel abroad, most commonly to India (n=209) and Pakistan (n=104). Of the 152 isolates of V. cholerae speciated by kmer identification, 149 (98.1%) were concordant with the traditional biochemical approach. Traditional serotyping results were 100% concordant with the whole genome sequencing (WGS) analysis for identification of serogroups O1 and O139 and Classical and El Tor biotypes. ctxA was detected in all isolates of V. cholerae O1 El Tor and O139 belonging to sequence type (ST) 69, and in V. cholerae O1 Classical variants belonging to ST73. A phylogeny of isolates belonging to ST69 from UK travellers clustered geographically, with isolates from India and Pakistan located on separate branches. Moving forward, WGS data from UK travellers will contribute to global surveillance programs, and the monitoring of emerging threats to public health and the global dissemination of pathogenic lineages. At the national level, these WGS data will inform the timely reinforcement of direct public health messaging to travellers and mitigate the impact of imported infections and the associated risks to public health.


2020 ◽  
Author(s):  
Sivakumar Shanmugam ◽  
Nathan L Bachmann ◽  
Elena Martinez ◽  
Ranjeeta Menon ◽  
Gopalan Narendran ◽  
...  

AbstractDifferentiation between relapse and reinfection in cases with tuberculosis (TB) recurrence has important implications for public health, especially in patients with human immunodeficiency virus (HIV) co-infection. Forty-one paired M. tuberculosis isolates collected from 20 HIV-positive and 21 HIV-negative patients, who experienced TB recurrence after previous successful treatment, were subjected to whole genome sequencing (WGS) in addition to spoligotyping and mycobacterial interspersed repeat unit (MIRU) typing. Comparison of M. tuberculosis genomes indicated that 95% of TB recurrences in the HIV-negative cohort were due to relapse, while the majority of TB recurrences (75%) in the HIV-positive cohort was due to re-infection (P=0.0001). Drug resistance conferring mutations were documented in four pairs (9%) of isolates associated with relapse. The high contribution of re-infection to TB among HIV patients warrants further study to explore risk factors for TB exposure in the community.


Author(s):  
Kelvin Kai-Wang To ◽  
Xin Li ◽  
David Christopher Lung ◽  
Jonathan Daniel Ip ◽  
Wan-Mui Chan ◽  
...  

Abstract A false-positive SARS-CoV-2 RT-PCR result can lead to unnecessary public-health measures. We report two individuals whose respiratory specimens were contaminated by inactivated SARS-CoV-2 vaccine strain(CoronaVac), likely at vaccination premises. Incidentally, whole-genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.


2018 ◽  
Vol 56 (11) ◽  
Author(s):  
David R. Greig ◽  
Ulf Schaefer ◽  
Sophie Octavia ◽  
Ebony Hunter ◽  
Marie A. Chattaway ◽  
...  

ABSTRACT Epidemiological and microbiological data on Vibrio cholerae strains isolated between April 2004 and March 2018 (n = 836) and held at the Public Health England culture archive were reviewed. The traditional biochemical species identification and serological typing results were compared with the genome-derived species identification and serotype for a subset of isolates (n = 152). Of the 836 isolates, 750 (89.7%) were from a fecal specimen, 206 (24.6%) belonged to serogroup O1, and 7 (0.8%) were serogroup O139; 792 (94.7%) isolates were from patients reporting recent travel abroad, most commonly to India (n = 209) and Pakistan (n = 104). Of the 152 V. cholerae isolates identified by use of kmer, 149 (98.1%) were concordant with those identified using the traditional biochemical approach. Traditional serotyping results were 100% concordant with those of the whole-genome sequencing (WGS) analysis for the identification of serogroups O1 and O139 and classical and El Tor biotypes. ctxA was detected in all isolates of V. cholerae O1 El Tor and O139 belonging to sequence type 69 (ST69) and in V. cholerae O1 classical variants belonging to ST73. A phylogeny of isolates belonging to ST69 from U.K. travelers clustered geographically, with isolates from India and Pakistan located on separate branches. Moving forward, WGS data from U.K. travelers will contribute to global surveillance programs and the monitoring of emerging threats to public health and the global dissemination of pathogenic lineages. At the national level, these WGS data will inform the timely reinforcement of direct public health messaging to travelers and mitigate the impact of imported infections and the associated risks to public health.


Sign in / Sign up

Export Citation Format

Share Document