scholarly journals powsimR: Power analysis for bulk and single cell RNA-seq experiments

2017 ◽  
Author(s):  
Beate Vieth ◽  
Christoph Ziegenhain ◽  
Swati Parekh ◽  
Wolfgang Enard ◽  
Ines Hellmann

AbstractPower analysis is essential to optimize the design of RNA-seq experiments and to assess and compare the power to detect differentially expressed genes in RNA-seq data. PowsimR is a flexible tool to simulate and evaluate differential expression from bulk and especially single-cell RNA-seq data making it suitable for a priori and posterior power analyses.


2020 ◽  
Author(s):  
Dustin J. Sokolowski ◽  
Mariela Faykoo-Martinez ◽  
Lauren Erdman ◽  
Huayun Hou ◽  
Cadia Chan ◽  
...  

AbstractRNA sequencing (RNA-seq) is widely used to identify differentially expressed genes (DEGs) and reveal biological mechanisms underlying complex biological processes. RNA-seq is often performed on heterogeneous samples and the resulting DEGs do not necessarily indicate the cell types where the differential expression occurred. While single-cell RNA-seq (scRNA-seq) methods solve this problem, technical and cost constraints currently limit its widespread use. Here we present single cell Mapper (scMappR), a method that assigns cell-type specificity scores to DEGs obtained from bulk RNA-seq by integrating cell-type expression data generated by scRNA-seq and existing deconvolution methods. After benchmarking scMappR using RNA-seq data obtained from sorted blood cells, we asked if scMappR could reveal known cell-type specific changes that occur during kidney regeneration. We found that scMappR appropriately assigned DEGs to cell-types involved in kidney regeneration, including a relatively small proportion of immune cells. While scMappR can work with any user supplied scRNA-seq data, we curated scRNA-seq expression matrices for ∼100 human and mouse tissues to facilitate its use with bulk RNA-seq data alone. Overall, scMappR is a user-friendly R package that complements traditional differential expression analysis available at CRAN.HighlightsscMappR integrates scRNA-seq and bulk RNA-seq to re-calibrate bulk differentially expressed genes (DEGs).scMappR correctly identified immune-cell expressed DEGs from a bulk RNA-seq analysis of mouse kidney regeneration.scMappR is deployed as a user-friendly R package available at CRAN.



2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Dustin J Sokolowski ◽  
Mariela Faykoo-Martinez ◽  
Lauren Erdman ◽  
Huayun Hou ◽  
Cadia Chan ◽  
...  

Abstract RNA sequencing (RNA-seq) is widely used to identify differentially expressed genes (DEGs) and reveal biological mechanisms underlying complex biological processes. RNA-seq is often performed on heterogeneous samples and the resulting DEGs do not necessarily indicate the cell-types where the differential expression occurred. While single-cell RNA-seq (scRNA-seq) methods solve this problem, technical and cost constraints currently limit its widespread use. Here we present single cell Mapper (scMappR), a method that assigns cell-type specificity scores to DEGs obtained from bulk RNA-seq by leveraging cell-type expression data generated by scRNA-seq and existing deconvolution methods. After evaluating scMappR with simulated RNA-seq data and benchmarking scMappR using RNA-seq data obtained from sorted blood cells, we asked if scMappR could reveal known cell-type specific changes that occur during kidney regeneration. scMappR appropriately assigned DEGs to cell-types involved in kidney regeneration, including a relatively small population of immune cells. While scMappR can work with user-supplied scRNA-seq data, we curated scRNA-seq expression matrices for ∼100 human and mouse tissues to facilitate its stand-alone use with bulk RNA-seq data from these species. Overall, scMappR is a user-friendly R package that complements traditional differential gene expression analysis of bulk RNA-seq data.



2020 ◽  
Author(s):  
Verboom Karen ◽  
Alemu T Assefa ◽  
Nurten Yigit ◽  
Jasper Anckaert ◽  
Niels Vandamme ◽  
...  

ABSTRACTTechnological advances in transcriptome sequencing of single cells continues to provide an unprecedented view on tissue composition and cellular heterogeneity. While several studies have compared different single cell RNA-seq methods with respect to data quality and their ability to distinguish cell subpopulations, none of these studies investigated the heterogeneity of the cellular transcriptional response upon a chemical perturbation. In this study, we evaluated the transcriptional response of NGP neuroblastoma cells upon nutlin-3 treatment using the C1, ddSeq and Chromium single cell systems. These devices and library preparation methods are representative for the wide variety of platforms, ranging from microfluid chips to droplet-based systems and from full transcript sequencing to 3-prime end sequencing. In parallel, we used bulk RNA-seq for molecular characterization of the transcriptional response. Two complementary metrics to evaluate performance were applied: the first is the number and identity of differentially expressed genes as defined in consensus by two statistical models, and the second is the enrichment analysis of biological signals. Where relevant, to make the data more comparable, we downsampled sequencing library size, selected cell subpopulations based on specific RNA abundance features, or created pseudobulk samples. While the C1 detects the highest number of genes per cell and better resembles bulk RNA-seq, the Chromium identifies most differentially expressed genes, albeit still substantially fewer than bulk RNA-seq. Gene set enrichment analyses reveals that detection of a limited set of the most abundant genes in single cell RNA-seq experiments is sufficient for molecular phenotyping. Finally, single cell RNA-seq reveals a heterogeneous response of NGP neuroblastoma cells upon nutlin-3 treatment, revealing putative late-responder or resistant cells, both undetected in bulk RNA-seq experiments.



2018 ◽  
Vol 12 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Bradford W. Lee ◽  
Virender B. Kumar ◽  
Pooja Biswas ◽  
Audrey C. Ko ◽  
Ramzi M. Alameddine ◽  
...  

Objective: This study utilized Next Generation Sequencing (NGS) to identify differentially expressed transcripts in orbital adipose tissue from patients with active Thyroid Eye Disease (TED) versus healthy controls. Method: This prospective, case-control study enrolled three patients with severe, active thyroid eye disease undergoing orbital decompression, and three healthy controls undergoing routine eyelid surgery with removal of orbital fat. RNA Sequencing (RNA-Seq) was performed on freshly obtained orbital adipose tissue from study patients to analyze the transcriptome. Bioinformatics analysis was performed to determine pathways and processes enriched for the differential expression profile. Quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR) was performed to validate the differential expression of selected genes identified by RNA-Seq. Results: RNA-Seq identified 328 differentially expressed genes associated with active thyroid eye disease, many of which were responsible for mediating inflammation, cytokine signaling, adipogenesis, IGF-1 signaling, and glycosaminoglycan binding. The IL-5 and chemokine signaling pathways were highly enriched, and very-low-density-lipoprotein receptor activity and statin medications were implicated as having a potential role in TED. Conclusion: This study is the first to use RNA-Seq technology to elucidate differential gene expression associated with active, severe TED. This study suggests a transcriptional basis for the role of statins in modulating differentially expressed genes that mediate the pathogenesis of thyroid eye disease. Furthermore, the identification of genes with altered levels of expression in active, severe TED may inform the molecular pathways central to this clinical phenotype and guide the development of novel therapeutic agents.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jordan W. Squair ◽  
Matthieu Gautier ◽  
Claudia Kathe ◽  
Mark A. Anderson ◽  
Nicholas D. James ◽  
...  

AbstractDifferential expression analysis in single-cell transcriptomics enables the dissection of cell-type-specific responses to perturbations such as disease, trauma, or experimental manipulations. While many statistical methods are available to identify differentially expressed genes, the principles that distinguish these methods and their performance remain unclear. Here, we show that the relative performance of these methods is contingent on their ability to account for variation between biological replicates. Methods that ignore this inevitable variation are biased and prone to false discoveries. Indeed, the most widely used methods can discover hundreds of differentially expressed genes in the absence of biological differences. To exemplify these principles, we exposed true and false discoveries of differentially expressed genes in the injured mouse spinal cord.



2021 ◽  
Author(s):  
Jordan W. Squair ◽  
Matthieu Gautier ◽  
Claudia Kathe ◽  
Mark A. Anderson ◽  
Nicholas D. James ◽  
...  

Differential expression analysis in single-cell transcriptomics enables the dissection of cell-type-specific responses to perturbations such as disease, trauma, or experimental manipulation. While many statistical methods are available to identify differentially expressed genes, the principles that distinguish these methods and their performance remain unclear. Here, we show that the relative performance of these methods is contingent on their ability to account for variation between biological replicates. Methods that ignore this inevitable variation are biased and prone to false discoveries. Indeed, the most widely used methods can discover hundreds of differentially expressed genes in the absence of biological differences. Our results suggest an urgent need for a paradigm shift in the methods used to perform differential expression analysis in single-cell data.



2014 ◽  
Author(s):  
Zong Hong Zhang ◽  
Dhanisha J. Jhaveri ◽  
Vikki M. Marshall ◽  
Denis C. Bauer ◽  
Janette Edson ◽  
...  

Recent advances in next-generation sequencing technology allow high-throughput cDNA sequencing (RNA-Seq) to be widely applied in transcriptomic studies, in particular for detecting differentially expressed genes between groups. Many software packages have been developed for the identification of differentially expressed genes (DEGs) between treatment groups based on RNA-Seq data. However, there is a lack of consensus on how to approach an optimal study design and choice of suitable software for the analysis. In this comparative study we evaluate the performance of three of the most frequently used software tools: Cufflinks-Cuffdiff2, DESeq and edgeR. A number of important parameters of RNA-Seq technology were taken into consideration, including the number of replicates, sequencing depth, and balanced vs. unbalanced sequencing depth within and between groups. We benchmarked results relative to sets of DEGs identified through either quantitative RT-PCR or microarray. We observed that edgeR performs slightly better than DESeq and Cuffdiff2 in terms of the ability to uncover true positives. Overall, DESeq or taking the intersection of DEGs from two or more tools is recommended if the number of false positives is a major concern in the study. In other circumstances, edgeR is slightly preferable for differential expression analysis at the expense of potentially introducing more false positives.



2019 ◽  
Author(s):  
Hirotaka Matsumoto ◽  
Tetsutaro Hayashi ◽  
Haruka Ozaki ◽  
Koki Tsuyuzaki ◽  
Mana Umeda ◽  
...  

AbstractSingle-cell RNA sequencing has enabled researchers to quantify the transcriptomes of individual cells, infer cell types, and investigate differential expression among cell types, which will lead to a better understanding of the regulatory mechanisms of cell states. Transcript diversity caused by phenomena such as aberrant splicing events have been revealed, and differential expression of previously unannotated transcripts might be overlooked by annotation-based analyses.Accordingly, we have developed an approach to discover overlooked differentially expressed (DE) gene regions that complements annotation-based methods. We applied our algorithm to two datasets and discovered several intriguing DE transcripts, including a transcript related to the modulation of neural stem/progenitor cell differentiation.



2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Rashi Gupta ◽  
Isha Dewan ◽  
Richa Bharti ◽  
Alok Bhattacharya

RNA-Seq is increasingly being used for gene expression profiling. In this approach, next-generation sequencing (NGS) platforms are used for sequencing. Due to highly parallel nature, millions of reads are generated in a short time and at low cost. Therefore analysis of the data is a major challenge and development of statistical and computational methods is essential for drawing meaningful conclusions from this huge data. In here, we assessed three different types of normalization (transcript parts per million, trimmed mean of M values, quantile normalization) and evaluated if normalized data reduces technical variability across replicates. In addition, we also proposed two novel methods for detecting differentially expressed genes between two biological conditions: (i) likelihood ratio method, and (ii) Bayesian method. Our proposed methods for finding differentially expressed genes were tested on three real datasets. Our methods performed at least as well as, and often better than, the existing methods for analysis of differential expression.



2020 ◽  
Author(s):  
Chanwoo Kim ◽  
Hanbin Lee ◽  
Juhee Jeong ◽  
Keehoon Jung ◽  
Buhm Han

ABSTRACTA common approach to analyzing single-cell RNA-sequencing data is to cluster cells first and then identify differentially expressed genes based on the clustering result. However, clustering has an innate uncertainty and can be imperfect, undermining the reliability of differential expression analysis results. To overcome this challenge, we present MarcoPolo, a clustering-free approach to exploring differentially expressed genes. To find informative genes without clustering, MarcoPolo exploits the bimodality of gene expression to learn the group information of the cells with respect to the expression level directly from given data. Using simulations and real data analyses, we showed that our method puts biologically informative genes at higher ranks more accurately and robustly than other existing methods. As our method provides information on how cells can be grouped for each gene, it can help identify cell types that are not separated well in the standard clustering process. Our method can also be used as a feature selection method to improve the robustness against changes in the number of genes used in clustering.



Sign in / Sign up

Export Citation Format

Share Document