scholarly journals SLFL Genes Participate in the Ubiquitination and Degradation ofS-RNase in Self-Compatible Chinese Peach

2017 ◽  
Author(s):  
Qiuju Chen ◽  
Dong Meng ◽  
Wei Li ◽  
Zhaoyu Gu ◽  
Hui Yuan ◽  
...  

AbstractThe gametophytic self-incompatibility (SI) mediated by S-RNase of Rosaceae, Solanaceae and Plantaginaceae, is controlled by two tightly linked genes located at highly polymorphic S-locus: the S-RNase for pistil specificity and the F-box gene (SFB/SLF) for pollen specificity, respectively. The F-box gene of peach (Prunus persica) isShaplotype-specific F-box (SFB). In this study, we selected 37 representative varieties according to the evolution route of peach and identified their S genotypes. We cloned pollen determinant genes mutantPperSFB1m, PperSFB2m, PperSFB4mand normalPperSFB2, and style determinant genesS1-RNase, S2-RNase, S2m-RNaseandS4-RNase.MutantPperSFBswere translated terminated prematurely because of fragment insertion. Yeast two-hybrid showed that mutant PperSFBs and normal PperSFB2 interacted with all S-RNases. NormalPperSFB2was divided into four parts: box, box-V1, V1-V2 and HVa-HVb. Protein interaction analyses showed that the box portion did not interact with S-RNases, both of the box-V1 and V1-V2 had interactions with S-RNases, while the hypervariable region ofPperSFB2HVa-HVb only interacted with S2-RNase. Bioinformatics analysis of peach genome revealed that there were other F-box genes located at S-locus, and of which three F-box genes were specifically expressed in pollen, namelyPperSLFL1, PperSLFL2andPperSLFL3, respectively. Phylogenetic analysis showed that PperSFBs and PperSLFLs were classified into two different clades. Yeast two-hybrid analysis revealed that as with PperSFBs, the three F-box proteins interacted with PperSSK1. Yeast two-hybrid and BiFC showed that PperSLFLs interacted with S-RNases with no allelic specificity. In vitro ubiquitination assay showed that PperSLFLs could tag ubiquitin molecules to PperS-RNases. In all, the above results suggest that threePperSLFLsare the appropriate candidates for the ‘general inhibitor’, which would inactivate the S-RNases in pollen tubes, and the role of three PperSLFL proteins is redundant, as S-RNase repressors involved in the self-incompatibility of peach.

2003 ◽  
Vol 23 (6) ◽  
pp. 1968-1982 ◽  
Author(s):  
Irfan Saadi ◽  
Adisa Kuburas ◽  
Jamison J. Engle ◽  
Andrew F. Russo

ABSTRACT Axenfeld-Rieger syndrome is an autosomal-dominant disorder caused by mutations in the PITX2 homeodomain protein. We have studied the mechanism underlying the dominant negative K88E mutation, which occurs at position 50 of the homeodomain. By using yeast two-hybrid and in vitro pulldown assays, we have documented that PITX2a can form homodimers in the absence of DNA. Moreover, the K88E mutant had even stronger dimerization ability, primarily due to interactions involving the C-terminal region. Dimerization allowed cooperative binding of wild-type (WT) PITX2a to DNA containing tandem bicoid sites in a head-to-tail orientation (Hill coefficient, 1.73). In contrast, the WT-K88E heterodimer bound the tandem sites with greatly reduced cooperativity and decreased transactivation activity. To further explore the role of position 50 in PITX2a dimerization, we introduced a charge-conservative mutation of lysine to arginine (K88R). The K88R protein had greatly reduced binding to a TAATCC element and did not specifically bind any other TAATNN motif. Like K88E, K88R formed relatively stronger dimers with WT. As predicted by our model, the K88R protein acted in a dominant negative manner to suppress WT PITX2a activity. These results suggest that the position 50 residue in the PITX2 homeodomain plays an important role in both DNA binding and dimerization activities.


2000 ◽  
Vol 74 (5) ◽  
pp. 2073-2083 ◽  
Author(s):  
Etienne Herzog ◽  
Orlene Guerra-Peraza ◽  
Thomas Hohn

ABSTRACT Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly.


2007 ◽  
Vol 18 (11) ◽  
pp. 4317-4326 ◽  
Author(s):  
Hiroshi Qadota ◽  
Kristina B. Mercer ◽  
Rachel K. Miller ◽  
Kozo Kaibuchi ◽  
Guy M. Benian

By yeast two-hybrid screening, we found three novel interactors (UNC-95, LIM-8, and LIM-9) for UNC-97/PINCH in Caenorhabditis elegans. All three proteins contain LIM domains that are required for binding. Among the three interactors, LIM-8 and LIM-9 also bind to UNC-96, a component of sarcomeric M-lines. UNC-96 and LIM-8 also bind to the C-terminal portion of a myosin heavy chain (MHC), MHC A, which resides in the middle of thick filaments in the proximity of M-lines. All interactions identified by yeast two-hybrid assays were confirmed by in vitro binding assays using purified proteins. All three novel UNC-97 interactors are expressed in body wall muscle and by antibodies localize to M-lines. Either a decreased or an increased dosage of UNC-96 results in disorganization of thick filaments. Our previous studies showed that UNC-98, a C2H2 Zn finger protein, acts as a linkage between UNC-97, an integrin-associated protein, and MHC A in myosin thick filaments. In this study, we demonstrate another mechanism by which this linkage occurs: from UNC-97 through LIM-8 or LIM-9/UNC-96 to myosin.


2003 ◽  
Vol 23 (19) ◽  
pp. 6944-6957 ◽  
Author(s):  
Nickolai A. Barlev ◽  
Alexander V. Emelyanov ◽  
Paola Castagnino ◽  
Philip Zegerman ◽  
Andrew J. Bannister ◽  
...  

ABSTRACT In yeast, the transcriptional adaptor yeast Ada2 (yAda2) is a part of the multicomponent SAGA complex, which possesses histone acetyltransferase activity through action of the yGcn5 catalytic enzyme. yAda2, among several SAGA proteins, serves to recruit SAGA to genes via interactions with promoter-bound transcription factors. Here we report identification of a new human Ada2 homologue, hAda2β. Ada2β differs both biochemically and functionally from the previously characterized hAda2α, which is a stable component of the human PCAF (human Gcn5 homologue) acetylase complex. Ada2β, relative to Ada2α, interacted selectively, although not stably, with the Gcn5-containing histone acetylation complex TFTC/STAGA. In addition, Ada2β interacted with Baf57 (a component of the human Swi/Snf complex) in a yeast two-hybrid screen and associated with human Swi/Snf in vitro. In functional assays, hAda2β (but not Ada2α), working in concert with Gcn5 (but not PCAF) or Brg1 (the catalytic component of hSwi/Snf complex), increased transcription via the B-cell-specific transcription factor Pax5/BSAP. These findings support the view that Gcn5 and PCAF have distinct roles in vivo and suggest a new mechanism of coactivator function, in which a single adaptor protein (Ada2β) can coordinate targeting of both histone acetylation and chromatin remodeling activities.


2001 ◽  
Vol 183 (4) ◽  
pp. 1423-1433 ◽  
Author(s):  
Susan R. Heimer ◽  
Harry L. T. Mobley

ABSTRACT Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)3. To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins.


1994 ◽  
Vol 14 (11) ◽  
pp. 7483-7491
Author(s):  
A Kikuchi ◽  
S D Demo ◽  
Z H Ye ◽  
Y W Chen ◽  
L T Williams

Using a yeast two-hybrid system, we identified a novel protein which interacts with ras p21. This protein shares 69% amino acid homology with ral guanine nucleotide dissociation stimulator (ralGDS), a GDP/GTP exchange protein for ral p24. We designated this protein RGL, for ralGDS-like. Using the yeast two-hybrid system, we found that an effector loop mutant of ras p21 was defective in interacting with the ras p21-interacting domain of RGL, suggesting that this domain binds to ras p21 through the effector loop of ras p21. Since ralGDS contained a region highly homologous with the ras p21-interacting domain of RGL, we examined whether ralGDS could interact with ras p21. In the yeast two-hybrid system, ralGDS failed to interact with an effector loop mutant of ras p21. In insect cells, ralGDS made a complex with v-ras p21 but not with a dominant negative mutant of ras p21. ralGDS interacted with the GTP-bound form of ras p21 but not with the GDP-bound form in vitro. ralGDS inhibited both the GTPase-activating activity of the neurofibromatosis gene product (NF1) for ras p21 and the interaction of Raf with ras p21 in vitro. These results demonstrate that ralGDS specifically interacts with the active form of ras p21 and that ralGDS can compete with NF1 and Raf for binding to the effector loop of ras p21. Therefore, ralGDS family members may be effector proteins of ras p21 or may inhibit interactions between ras p21 and its effectors.


2005 ◽  
Vol 79 (18) ◽  
pp. 11824-11836 ◽  
Author(s):  
Mingzhou Chen ◽  
Jean-Claude Cortay ◽  
Ian R. Logan ◽  
Vasileia Sapountzi ◽  
Craig N. Robson ◽  
...  

ABSTRACT Using a C-terminal domain (PCT) of the measles virus (MV) phosphoprotein (P protein) as bait in a yeast two-hybrid screen, a cDNA identical to the recently described human p53-induced-RING-H2 (hPIRH2) cDNA was isolated. A glutathione S-transferase-hPIRH2 fusion protein expressed in bacteria was able to pull down P protein when mixed with an extract from P-expressing HeLa cells in vitro, and myc-tagged hPIRH2 could be reciprocally coimmunoprecipitated with MV P protein from human cells. Additionally, immunoprecipitation experiments demonstrated that hPIRH2-myc, MV P, and nucleocapsid (N) proteins form a ternary complex. The hPIRH2 binding site was mapped to the C-terminal X domain region of the P protein by using a yeast two-hybrid assay. The PCT binding site was mapped on hPIRH2 by using a novel yeast two-hybrid tagged PCR approach and by coimmunoprecipitation of hPIRH2 cysteine mutants and mouse/human PIRH2 chimeras. The hPIRH2 C terminus could mediate the interaction with MV P which was favored by the RING-H2 motif. When coexpressed with an enhanced green fluorescent protein-tagged hPIRH2 protein, MV P alone or in a complex with MV N was able to redistribute hPIRH2 to outside the nucleus, within intracellular aggregates. Finally, MV P efficiently stabilized hPIRH2-myc expression and prevented its ubiquitination in vivo but had no effect on the stability or ubiquitination of an alternative ubiquitin E3 ligase, Mdm2. Thus, MV P protein is the first protein from a pathogen that is able to specifically interact with and stabilize the ubiquitin E3 ligase hPIRH2 by preventing its ubiquitination.


2000 ◽  
Vol 350 (3) ◽  
pp. 741-746 ◽  
Author(s):  
Julian GRUSOVIN ◽  
Violet STOICHEVSKA ◽  
Keith H. GOUGH ◽  
Katrina NUNAN ◽  
Colin W. WARD ◽  
...  

munc18c is a critical protein involved in trafficking events associated with syntaxin 4 and which also mediates inhibitory effects on vesicle docking and/or fusion. To investigate the domains of munc18c responsible for its interaction with syntaxin 4, fragments of munc18c were generated and their interaction with syntaxin 4 examined in vivo by the yeast two-hybrid assay. In vitro protein–protein interaction studies were then used to confirm that the interaction between the proteins was direct. Full-length munc18c1–592, munc18c1–139 and munc18c1–225, but not munc18c226–592, munc18c1–100, munc18c43–139 or munc18c66–139, interacted with the cytoplasmic portion of syntaxin 4, Stx42–273, as assessed by yeast two-hybrid assay of growth on nutritionally deficient media and by β-galactosidase reporter induction. The N-terminal predicted helix-a-helix-b-helix-c region of syntaxin 4, Stx429–157, failed to interact with full-length munc18c1–592, indicating that a larger portion of syntaxin 4 is necessary for the interaction. The yeast two-hybrid results were confirmed by protein–protein interaction studies between Stx42–273 and glutathione S-transferase fusion proteins of munc18c. Full-length munc18c1–592, munc18c1–139 and munc18c1–225 interacted with Stx42–273 whereas munc18c1–100 did not, consistent with the yeast two-hybrid data. These data thus identify a region of munc18c between residues 1 and 139 as a minimal domain for its interaction with syntaxin 4.


Author(s):  
Jinxin Gao ◽  
Jie Chen

We previously reported that the BTB domain-containing protein Clt1 regulates melanin and toxin synthesis, conidiation, and pathogenicity in Curvularia lunata, but the interacting proteins and regulative mechanism of Clt1 are unclear. In this research, we identified two proteins, which respectively correspond to xylanase (Clxyn24) and acetyl xylan esterase (Claxe43) from C. lunata were regulated by Clt1. Yeast two-hybrid (Y2H), and bimolecular fluorescence complementation assays were conducted to verify the interaction of Clt1 with full-length Clxyn24 and Claxe43. Furthermore, the Y2H assay revealed that Clt1 physically interacted with Clxyn24 and Claxe43 through its BTB domain to degrade xylan which was used as a carbon source for C. lunata growth. The utilization of xylan provides acetyl-CoA for the synthesis of melanin and toxin, as well as energy and other intermediate metabolites for conidiation. Furthermore, transcriptome analysis revealed that PKS18 and its 13 flanking genes are found clustered in a region spanning 57.89 kb on scaffold 9 of the C. lunata CX-3 genome were down-regulated in toxin production deficient mutant T806, and this cluster is possibly responsible for toxin biosynthesis of C. lunata.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rebecca J Steagall ◽  
Fang Hua ◽  
Mahesh Thirunazukarasu ◽  
Lijun Zhan ◽  
Chuanfu Li ◽  
...  

We have previously shown that HspA12B, a member of HspA70 family subfamily 12, is a novel angiogenesis regulator that is preferentially expressed in endothelial cells (ECs) and required for angiogenesis in vitro . The mechanism by which HspA12B regulates angiogenesis, however, is unknown. In this study we identified AKAP12/SSeCKS as a HSPA12B-interacting protein through a yeast two-hybrid screening and confirmed the interaction by co-immunoprecipitation and co-localization. We observed that HspA12B negatively regulated the expression of AKAP12/SSeCKS, a cancer metastasis repressor that inhibits VEGF expression and angiogen-esis. In HUVEC, HspA12B knockdown increased AKAP12 levels, decreased VEGF by more than 75%, and down-regulated Akt and pAkt; whereas HspA12B over expression decreased AKAP12 and more than doubled VEGF levels. We further identified a 32-AA domain in AKAP12 that was capable of interacting with HspA12B. Overexpression of this 32-AA domain in HUVEC disrupted the HspA12B-AKAP12 interaction and decreased VEGF expression by more than 70%, suggesting the importance of HspA12B-AKAP12 interaction in regulating VEGF. We also observed that HspA12B expression was increased more than 2 folds in ECs by hypoxia or shearing stress, and induced in ischemic rat heart. Inhibition of HspA12B abolished hypoxia-induced tubule formation. Adeno-HspA12B promoted angiogenesis in DIVAA assay. We concluded that this is the first evidence that HspA12B promotes angiogenesis through regulating VEGF by way of suppressing AKAP12. Our finding is the first example of an EC-specific molecular chaperone acting as the regulator of angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document