scholarly journals Genomics-Based Identification of Microorganisms in Human Ocular Body Fluid

2017 ◽  
Author(s):  
Philipp Kirstahler ◽  
Søren Solborg Bjerrum ◽  
Alice Friis-Møller ◽  
Morten la Cour ◽  
Frank M. Aarestrup ◽  
...  

AbstractAdvances in genomics have the potential to revolutionize clinical diagnostics. Here, we examine the microbiome of vitreous (intraocular body fluid) from patients who developed endophthalmitis following cataract surgery or intravitreal injection. Endophthalmitis is an inflammation of the intraocular cavity and can lead to a permanent loss of vision. As controls, we included vitreous from endophthalmitis-negative patients, balanced salt solution used during vitrectomy, and DNA extraction blanks. We compared two DNA isolation procedures and found that an ultraclean production of reagents appeared to reduce background DNA in these low microbial biomass samples. We created a curated microbial genome database (>5700 genomes) and designed a metagenomics workflow with filtering steps to reduce DNA sequences originating from: i) human hosts, ii) ambiguousness/contaminants in public microbial reference genomes, and iii) the environment. Our metagenomic read classification revealed in nearly all cases the same microorganism than was determined in cultivation‐ and mass spectrometry-based analyses. For some patients, we identified the sequence type of the microorganism and antibiotic resistance genes through analyses of whole genome sequence (WGS) assemblies of isolates and metagenomic assemblies. Together, we conclude that genomics-based analyses of human ocular body fluid specimens can provide actionable information relevant to infectious disease management.

Genetics ◽  
2003 ◽  
Vol 163 (4) ◽  
pp. 1299-1313
Author(s):  
Zheng Xu ◽  
Britton Lance ◽  
Claudia Vargas ◽  
Budak Arpinar ◽  
Suchendra Bhandarkar ◽  
...  

Abstract A bioinformatics tool called ODS3 has been created for mapping by sequencing. The tool allows the creation of integrated genomic maps from genetic, physical mapping, and sequencing data and permits an integrated genome map to be stored, retrieved, viewed, and queried in a stand-alone capacity, in a client/server relationship with the Fungal Genome Database (FGDB), and as a web-browsing tool for the FGDB. In that ODS3 is programmed in Java, the tool promotes platform independence and supports export of integrated genome-mapping data in the extensible markup language (XML) for data interchange with other genome information systems. The tool ODS3 is used to create an initial integrated genome map of the AIDS-related fungal pathogen, Pneumocystis carinii. Contig dynamics would indicate that this physical map is ∼50% complete with ∼200 contigs. A total of 10 putative multigene families were found. Two of these putative families were previously characterized in P. carinii, namely the major surface glycoproteins (MSGs) and HSP70 proteins; three of these putative families (not previously characterized in P. carinii) were found to be similar to families encoding the HSP60 in Schizosaccharomyces pombe, the heat-shock Ψ protein in S. pombe, and the RNA synthetase family (i.e., MES1) in Saccharomyces cerevisiae. Physical mapping data are consistent with the 16S, 5.8S, and 26S rDNA genes being single copy in P. carinii. No other fungus outside this genus is known to have the rDNA genes in single copy.


2014 ◽  
Author(s):  
Jason W Sahl ◽  
Greg Caporaso ◽  
David A Rasko ◽  
Paul S Keim

Background. As whole genome sequence data from bacterial isolates becomes cheaper to generate, computational methods are needed to correlate sequence data with biological observations. Here we present the large-scale BLAST score ratio (LS-BSR) pipeline, which rapidly compares the genetic content of hundreds to thousands of bacterial genomes, and returns a matrix that describes the relatedness of all coding sequences (CDSs) in all genomes surveyed. This matrix can be easily parsed in order to identify genetic relationships between bacterial genomes. Although pipelines have been published that group peptides by sequence similarity, no other software performs the large-scale, flexible, full-genome comparative analyses carried out by LS-BSR. Results. To demonstrate the utility of the method, the LS-BSR pipeline was tested on 96 Escherichia coli and Shigella genomes; the pipeline ran in 163 minutes using 16 processors, which is a greater than 7-fold speedup compared to using a single processor. The BSR values for each CDS, which indicate a relative level of relatedness, were then mapped to each genome on an independent core genome single nucleotide polymorphism (SNP) based phylogeny. Comparisons were then used to identify clade specific CDS markers and validate the LS-BSR pipeline based on molecular markers that delineate between classical E. coli pathogenic variant (pathovar) designations. Scalability tests demonstrated that the LS-BSR pipeline can process 1,000 E. coli genomes in ~60h using 16 processors. Conclusions. LS-BSR is an open-source, parallel implementation of the BSR algorithm, enabling rapid comparison of the genetic content of large numbers of genomes. The results of the pipeline can be used to identify specific markers between user-defined phylogenetic groups, and to identify the loss and/or acquisition of genetic information between bacterial isolates. Taxa-specific genetic markers can then be translated into clinical diagnostics, or can be used to identify broadly conserved putative therapeutic candidates.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Lu Liu ◽  
Yu Feng ◽  
Haiyan Long ◽  
Alan McNally ◽  
Zhiyong Zong

ABSTRACT A carbapenem-resistant Klebsiella pneumoniae isolate was recovered from human blood. Its whole-genome sequence was obtained using Illumina and long-read MinION sequencing. The strain belongs to sequence type 273 (ST273), which was found recently and caused an outbreak in Southeast Asia. It has two carbapenemase genes, bla NDM-1 (carried by an ST7 IncN self-transmissible plasmid) and bla IMP-4 (located on a self-transmissible IncHI5 plasmid). Non-KPC-producing ST237 may represent a lineage of carbapenem-resistant K. pneumoniae , which warrants further monitoring.


2021 ◽  
Author(s):  
Mehdi Fatahi-Bafghi ◽  
Sara Naseri ◽  
Ali Alizehi

Abstract Having various clinical applications, probiotic bacteria are currently used in the diet. There are reports of antibiotic resistance genes (ARGs) in these bacteria that can be transferred to other microflora and pathogenic bacteria. The aim of the study is to examine whole-genome sequence analysis in bacteria with probiotic properties. Moreover, this study follows existing issues about the importance and presence of ARGs in these bacteria the dangers of which may affect human health in the years to come. In the present study, 126 complete probiotic bacterial genomes were collected and analysed for ARGs. The results of the study shows there are various antibiotic resistant genes of in these bacteria some of which can be transmitted to other bacteria. We propose microorganisms be applied as a probiotic element in various types of products, antibiogram be conducted for a large number of antibiotics and analysis of complete genome sequence for ARGs prediction.


2019 ◽  
Vol 14 (16) ◽  
pp. 1357-1367
Author(s):  
Jumamurat R Bayjanov ◽  
Miquel B Ekkelenkamp ◽  
Malbert RC Rogers ◽  
Rafael Cantón ◽  
Barry J Benaissa-Trouw ◽  
...  

Aim: Genetic characterization of Pandoraea strains recovered from cystic fibrosis patients. Materials & methods: The whole-genome sequence of 12 Pandoraea strains was determined using Illumina technology. The position of the strains within the genus Pandoraea was analyzed using selected partial gene sequences, core genome multi-locus sequence typing and average nucleotide identity analysis. Furthermore, the sequences were annotated. Results: The results show that some strains previously identified as Pandoraea pnomenusa, Pandoraea sputorum, Pandoraea oxalativorans and Pandoraea pulmonicola belong to novel species. The strains did not harbor acquired antibiotic resistance genes but encoded an OXA-type ß-lactamase. Conclusion: The taxonomy of the genus Pandoraea needs to be revised.


2020 ◽  
Vol 76 (1) ◽  
pp. 65-69
Author(s):  
Xiaoting Hua ◽  
Robert A Moran ◽  
Qingye Xu ◽  
Jintao He ◽  
Youhong Fang ◽  
...  

Abstract Objectives To reconstruct the evolutionary history of the clinical Acinetobacter baumannii XH1056, which lacks the Oxford scheme allele gdhB. Methods Susceptibility testing was performed using broth microdilution and agar dilution. The whole-genome sequence of XH1056 was determined using the Illumina and Oxford Nanopore platforms. MLST was performed using the Pasteur scheme and the Oxford scheme. Antibiotic resistance genes were identified using ABRicate. Results XH1056 was resistant to all antibiotics tested, apart from colistin, tigecycline and eravacycline. MLST using the Pasteur scheme assigned XH1056 to ST256. However, XH1056 could not be typed with the Oxford MLST scheme as gdhB is not present. Comparative analyses revealed that XH1056 contains a 52 933 bp region acquired from a global clone 2 (GC2) isolate, but is otherwise closely related to the ST23 A. baumannii XH858. The acquired region in XH1056 also contains a 34 932 bp resistance island that resembles AbGRI3 and contains the armA, msrE-mphE, sul1, blaPER-1, aadA1, cmlA1, aadA2, blaCARB-2 and ere(B) resistance genes. Comparison of the XH1056 chromosome to that of GC2 isolate XH859 revealed that the island in XH1056 is in the same chromosomal region as that in XH859. As this island is not in the standard AbGRI3 position, it was named AbGRI5. Conclusions XH1056 is a hybrid isolate generated by the acquisition of a chromosomal segment from a GC2 isolate that contains a resistance island in a new location—AbGRI5. As well as generating ST256, it appears likely that a single recombination event is also responsible for the acquisition of AbGRI5 and its associated antibiotic resistance genes.


2011 ◽  
Vol 9 (1) ◽  
pp. 86 ◽  
Author(s):  
Sascha Keller ◽  
Johannes Ridinger ◽  
Anne-Kathleen Rupp ◽  
Johannes WG Janssen ◽  
Peter Altevogt

2020 ◽  
Vol 7 ◽  
Author(s):  
John I. Alawneh ◽  
Ben Vezina ◽  
Hena R. Ramay ◽  
Hulayyil Al-Harbi ◽  
Ameh S. James ◽  
...  

Escherichia coli is frequently associated with mastitis in cattle. “Pathogenic” and “commensal” isolates appear to be genetically similar. With a few exceptions, no notable genotypic differences have been found between commensal and mastitis-associated E. coli. In this study, 24 E. coli strains were isolated from dairy cows with clinical mastitis in three geographic regions of Australia (North Queensland, South Queensland, and Victoria), sequenced, then genomically surveyed. There was no observed relationship between sequence type (ST) and region (p = 0.51). The most common Multi Locus Sequence Type was ST10 (38%), then ST4429 (13%). Pangenomic analysis revealed a soft-core genome of 3,463 genes, including genes associated with antibiotic resistance, chemotaxis, motility, adhesion, biofilm formation, and pili. A total of 36 different plasmids were identified and generally found to have local distributions (p = 0.02). Only 2 plasmids contained antibiotic resistance genes, a p1303_5-like plasmid encoding multidrug-resistance (trimethoprim, quaternary ammonium, beta-lactam, streptomycin, sulfonamide, and kanamycin) from two North Queensland isolates on the same farm, while three Victorian isolates from the same farm contained a pCFSAN004177P_01-like plasmid encoding tetracycline-resistance. This pattern is consistent with a local spread of antibiotic resistance through plasmids of bovine mastitis cases. Notably, co-occurrence of plasmids containing virulence factors/antibiotic resistance with putative mobilization was rare, though the multidrug resistant p1303_5-like plasmid was predicted to be conjugative and is of some concern. This survey has provided greater understanding of antibiotic resistance within E. coli-associated bovine mastitis which will allow greater prediction and improved decision making in disease management.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S337-S338
Author(s):  
Oscar Gomez-Duarte ◽  
Julio Guerra ◽  
Ricky Ko

Abstract Background Enteroinvasive Escherichia coli (EIEC) are involved in dysenteric diarrhea among children in low- and middle-income countries. EIEC strains isolated in Colombia, South America were shown to form biofilms and to be invasive in vitro. The O96:H19 serotypes and biofilm formation (BF) are not common phenotypes among EIEC, and the role they may play in diarrhea is at present unknown. The main goal of this study was to identify virulence and BF genes from EIEC genomic data. We hypothesize that EIEC O96:H19 strain 52.1 originated from horizontal transfer of a Shigella-like virulence plasmid into a non-EIEC pathogenic E coli strain. Methods WGS was performed on the BF-EIEC 52.1 strain using NextGen Illumina and Pacific Biosciences (PacBio) platforms. Publically available genomes from other EIEC O96H19 and Shigella genomes previously published were analyzed using online available software and databases including NCBI, BLAST, Mauve, among others. This analysis was tailored to identify virulence factors from the virulence factor database (VFDB). BLASTn was used to determine identity and query coverage of genes encoding the Shigella virulence factors. EIEC and Shigella genomes were analyzed on a multiple genome alignment software (Mauve) to verify results from BLASTn and to determine pseudogenes. Results The genome of EIEC O96:H19 strain 52.1 was 5,193,449 bp in size, containing 5,050 coding DNA sequences (CDSs). O96:H19 strain 52.1 carries three plasmids, the invasion plasmid (pINV) contains all type 3 secretion system (TTSS) and TTSS effectors genes previously described for Shigella and EIEC O96:H19 CFSAN029787 Italian strain. Non-TTSS virulence genes were also identified, including: long polar fimbrial gene (IpfA), enterotoxin (senB), and antibiotic resistance genes. Conclusion The EIEC O96:H19 strain 52.1 genome carries TTSS genes within a virulence plasmid, protein effector genes, and enterotoxin genes known to be associated with EIEC virulence. The EIEC O96:H19 stain 52.1 is an emergent diarrheagenic pathogen likely derived from an E. coli O96:H19 strain that acquired a Shigella-like virulence plasmid by horizontal transfer. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document